
SWINGS

10 Marks

Unit Outcomes

 Differentiate between AWT and Swing on

the given aspects.

 Develop Graphical User Interface (GUI)

programs using swing components for the

given problem.

 Use the given type of button in Java based

GUI

 Develop Graphical User Interface (GUI)

programs using advanced swing

components for the given problem.

Introduction

 Swing API is a set of extensible GUI

Components to ease the developer's life to

create JAVA based Front End/GUI

Applications.

 It is build on top of AWT API and acts as a

replacement of AWT API, since it has

almost every control corresponding to

AWT controls.

Introduction (cont..)

 Swing component follows a Model-View-

Controller architecture to fulfill the

following criteria's.

 A single API is to be sufficient to support

multiple look and feel.

 API is to be model driven so that the highest

level API is not required to have data.

 API is to use the Java Bean model so that

Builder Tools and IDE can provide better

services to the developers for use.

MVC Architecture

 Swing API architecture follows loosely based MVC

architecture in the following manner.

 Model represents component's data.

 View represents visual representation of the

component's data.

 Controller takes the input from the user on the

view and reflects the changes in Component's

data.

 Swing component has Model as a separate

element, while the View and Controller part are

clubbed in the User Interface elements. Because

of which, Swing has a pluggable look-and-feel

architecture.

Swing Features

 Light Weight − Swing components are

independent of native Operating System's

API as Swing API controls are rendered

mostly using pure JAVA code instead of

underlying operating system calls.

 Rich Controls − Swing provides a rich set of

advanced controls like Tree, TabbedPane,

slider, colorpicker, and table controls.

Swing Features (cont..)

 Highly Customizable − Swing controls can

be customized in a very easy way as visual

apperance is independent of internal

representation.

 Pluggable look-and-feel − SWING based

GUI Application look and feel can be

changed at run-time, based on available

values.

Hierarchy of Java Swing classes

Difference between AWT &

Swing

No. Java AWT Java Swing

1) AWT components are platform-

dependent.

Java swing components are platform-

independent.

2) AWT components are heavyweight. Swing components are lightweight.

3) AWT doesn't support pluggable look

and feel.

Swing supports pluggable look and feel.

4) AWT provides less components than

Swing.

Swing provides more powerful

components such as tables, lists,

scrollpanes, colorchooser, tabbedpane etc.

5) AWT doesn't follows MVC (Model View

Controller) where model represents data,

view represents presentation and

controller acts as an interface between

model and view.

Swing follows MVC.

Commonly used Methods of

Component class

Method Description

public void add(Component c) add a component on another component.

public void setSize(int width,int height) sets size of the component.

public void setLayout(LayoutManager m)
sets the layout manager for the

component.

public void setVisible(boolean b)
sets the visibility of the component. It is

by default false.

JFrame

JFrame

 JFrame works like the main window where

components like labels, buttons, textfields are

added to create a GUI.

 Unlike Frame, JFrame has the option to hide

or close the window with the help of

setDefaultCloseOperation(int) method.

JFrame (cont..)

Constructor Description

JFrame() It constructs a new frame that is initially invisible.

JFrame(GraphicsConfiguration gc)

It creates a Frame in the specified

GraphicsConfiguration of a screen device and a

blank title.

JFrame(String title)
It creates a new, initially invisible Frame with the

specified title.

JFrame(String title,

GraphicsConfiguration gc)

It creates a JFrame with the specified title and

the specified GraphicsConfiguration of a screen

device.

JFrame (cont..)

Modifier and Type Method Description

protected void addImpl(Component comp,

Object constraints, int index)

Adds the specified child

Component.

protected JRootPane createRootPane() Called by the constructor methods

to create the default rootPane.

protected void frameInit() Called by the constructors to init

the JFrame properly.

void setContentPane(Containe

contentPane)

It sets the contentPane property

static void setDefaultLookAndFeelDec

orated(boolean

defaultLookAndFeelDecorat

ed)

Provides a hint as to whether or

not newly created JFrames should

have their Window decorations

(such as borders, widgets to close

the window, title...) provided by the

current look and feel.

JFrame (cont..)

Modifier and Type Method Description

void
setIconImage(Image

image)

It sets the image to be displayed as

the icon for this window.

void
setJMenuBar(JMenuBar

menubar)
It sets the menubar for this frame.

void
setLayeredPane(JLayered

Pane layeredPane)
It sets the layeredPane property.

JRootPane getRootPane()
It returns the rootPane object for this

frame.

TransferHandler getTransferHandler() It gets the transferHandler property.

Program

Programs/Chapter2/JFrameExample.java

JApplet

 We can use JApplet that can have all the

controls of swing.

Program

Programs/Chapter2/JAppletExample.java

JPanel

 The JPanel is a simplest container class.

 It provides space in which an application can

attach any other component.

 It inherits the JComponents class.

Constructor Description

JPanel()
It is used to create a new JPanel with a

double buffer and a flow layout.

JPanel(boolean isDoubleBuffered)

It is used to create a new JPanel with

FlowLayout and the specified buffering

strategy.

JPanel(LayoutManager layout)
It is used to create a new JPanel with the

specified layout manager.

Program

Programs/Chapter2/JPanelExample.java

ImageIcon

 In Swing, icons are encapsulated by the

ImageIcon class, which paints an icon

from an image

Constructors

ImageIcon()

ImageIcon(byte[] imageData)

ImageIcon(byte[] imageData, String description)

ImageIcon(Image image)

ImageIcon(Image image, String description)

ImageIcon(String filename)

ImageIcon(String filename, String description)

ImageIcon(URL location)

ImageIcon(URL location, String description)

ImageIcon (cont..)

Methods

 String getDescription()

 int getIconHeight()

 int getIconWidth()

 Image getImage()

 void setDescription(String description)

 void setImage(Image image)

JLabel

 The object of JLabel class is a component for

placing text in a container.

 It is used to display a single line of read only

text.

 The text can be changed by an application

but a user cannot edit it directly. It inherits

JComponent class.

Constructor Description

JLabel() Creates a JLabel instance with no image and with

an empty string for the title.

JLabel(String s) Creates a JLabel instance with the specified text.

JLabel(Icon i) Creates a JLabel instance with the specified

image.

JLabel(String s, Icon i, int

horizontalAlignment)

Creates a JLabel instance with the specified text,

image, and horizontal alignment.

Methods Description

String getText() t returns the text string that a label displays.

void setText(String text) It defines the single line of text this

component will display.

void setHorizontalAlignment(int

alignment)

It sets the alignment of the label's contents

along the X axis.

Icon getIcon() It returns the graphic image that the label

displays.

int getHorizontalAlignment() It returns the alignment of the label's

contents along the X axis.

Program

Programs/Chapter2/JLabelExample.java

JButton
 The JButton class is used to create a labeled

button that has platform independent

implementation.

 The application result in some action when

the button is pushed.

 It inherits AbstractButton class.

Constructor Description

JButton() It creates a button with no text and icon.

JButton(String s) It creates a button with the specified text.

JButton(Icon i) It creates a button with the specified icon object.

JButton(String s, Icon i) It creates a button with the specified text and icon.

JButton(Action a) Creates a button where properties are taken from

the Action supplied

Methods Description

void setText(String s) It is used to set specified text on button

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setIcon(Icon b) It is used to set the specified Icon on the button.

Icon getIcon() It is used to get the Icon of the button.

void setMnemonic(int a) It is used to set the mnemonic on the button.

void addActionListener(ActionListener a) It is used to add the action listener to this object.

Program

https://www.javatpoint.com/java-actionlistener
https://www.javatpoint.com/java-actionlistener
https://www.javatpoint.com/java-actionlistener
Programs/Chapter2/JButtonExample.java

JTextField
 The object of a JTextField class is a text

component that allows the editing of a single

line text.

 It inherits JTextComponent class.

Constructor Description

JTextField() Creates a new TextField

JTextField(String text) Creates a new TextField initialized with the

specified text.

JTextField(String text, int columns) Creates a new TextField initialized with the

specified text and columns.

JTextField(int columns) Creates a new empty TextField with the

specified number of columns.

JTextField(Document doc, String

text, int columns)

Constructs a new JTextField that uses the

given text storage model and the given

number of columns.

Methods Description

void addActionListener(ActionListener l) It is used to add the specified action

listener to receive action events from

this textfield.

Action getAction() It returns the currently set Action for this

ActionEvent source, or null if no Action

is set.

void setFont(Font f) It is used to set the current font.

void

removeActionListener(ActionListener l)

It is used to remove the specified action

listener so that it no longer receives

action events from this textfield.

Program

Programs/Chapter2/JTextExample.java

JTextArea
 The object of a JTextArea class is a multi line region that

displays text.

 It allows the editing of multiple line text.

 It inherits JTextComponent class

Constructor Description

JTextArea() Creates a text area that displays no text initially.

JTextArea(String s) Creates a text area that displays specified text initially.

JTextArea(int row, int column) Creates a text area with the specified number of rows

and columns that displays no text initially.

JTextArea(String s, int row, int

column)

Creates a text area with the specified number of rows

and columns that displays specified text.

JTextArea(Document doc) Constructs a new JTextArea with the given document

model, and defaults for all of the other arguments (null,

0, 0).

JTextArea(Document doc,

String text, int rows, int

columns)

Constructs a new JTextArea with the specified number

of rows and columns, and the given model.

Methods Description

void setRows(int rows) It is used to set specified number of rows.

void setColumns(int cols) It is used to set specified number of

columns.

void setFont(Font f) It is used to set the specified font.

void insert(String s, int position) It is used to insert the specified text on the

specified position.

void append(String s) It is used to append the given text to the

end of the document.

Program

Programs/Chapter2/JTextAreaExample.java

JPasswordField
 The object of a JPasswordField class is a text

component specialized for password entry.

 It allows the editing of a single line of text.

 It inherits JTextField class.
Constructor Description

JPasswordField() Constructs a new JPasswordField, with a

default document, null starting text string, and

0 column width.

JPasswordField(int columns) Constructs a new empty JPasswordField with

the specified number of columns.

JPasswordField(String text) Constructs a new JPasswordField initialized

with the specified text.

JPasswordField(String text, int columns) Construct a new JPasswordField initialized

with the specified text and columns.

JPasswordField(Document doc, String

txt, int columns)

Constructs a new JPasswordField that uses

the given text storage model and the given

number of columns.

Program

Programs/Chapter2/PasswordFieldExample.java

JCheckBox

 The JCheckBox class is used to create a

checkbox.

 It is used to turn an option on (true) or off

(false). Clicking on a CheckBox changes its

state from "on" to "off" or from "off" to "on ".

 It inherits JToggleButton class.

https://www.javatpoint.com/java-jtogglebutton

Constructor Description

JJCheckBox() Creates an initially unselected check box

button with no text, no icon.

JCheckBox(String s) Creates an initially unselected check box with

text.

JCheckBox(String text, boolean

selected)

Creates a check box with text and specifies

whether or not it is initially selected.

JCheckBox(Action a) Creates a check box where properties are

taken from the Action supplied.

JCheckBox(Icon icon) Creates an initially unselected checkbox with

an icon.

JCheckBox(Icon icon, boolean

selected)

Creates a checkbox with an icon and

specifies whether or not it is initially selected.

JCheckBox(String text, Icon icon) Creates an initially unselected checkbox with

the specified text and icon.

JCheckBox(String text, Icon icon,

boolean selected)

Creates a checkbox with text and icon, and

specifies whether or not it is initially selected

JRadioButton

 The JRadioButton class is used to create a

radio button.

 It is used to choose one option from multiple

options.

 It is widely used in exam systems or quiz.

 It should be added in ButtonGroup to select

one radio button only.

Constructor Description

JRadioButton() Creates an unselected radio button with no

text.

JRadioButton(String s) Creates an unselected radio button with

specified text.

JRadioButton(String s, boolean

selected)

Creates a radio button with the specified text

and selected status.

JRadioButton(Action a) Creates a radiobutton where properties are

taken from the Action supplied.

JRadioButton(Icon icon) Creates an initially unselected radio button with

the specified image but no text

JRadioButton(Icon icon,

boolean selected)

Creates a radio button with the specified image

and selection state, but no text.

JRadioButton(String text, Icon

icon)

Creates a radio button that has the specified

text and image, and which is initially

unselected.

JRadioButton(String text, Icon

icon, boolean selected)

Creates a radio button that has the specified

text, image, and selection state.

Methods Description

void setText(String s) It is used to set specified text on button.

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setIcon(Icon b) It is used to set the specified Icon on the button.

Icon getIcon() It is used to get the Icon of the button.

void setMnemonic(int a) It is used to set the mnemonic on the button.

void

addActionListener(ActionListener a)

It is used to add the action listener to this object.

Program

Programs/Chapter2/JRadioExample.java

JComboBox
 The object of Choice class is used to show

popup menu of choices.

 Choice selected by user is shown on the top

of a menu.

 It inherits JComponent class.

Constructor Description

JComboBox() Creates a JComboBox with a default data model.

JComboBox(Object[] items) Creates a JComboBox that contains the elements

in the specified array.

JComboBox(Vector<?> items) Creates a JComboBox that contains the elements

in the specified Vector.

JComboBox(ComboBoxModel

aModel)

Creates a JComboBox that takes its items from an

existing ComboBoxModel.

Methods Description

void addItem(Object anObject) It is used to add an item to the item list.

void removeItem(Object anObject) It is used to delete an item to the item list.

void removeAllItems() It is used to remove all the items from the list.

void setEditable(boolean b) It is used to determine whether the JComboBox is

editable.

void addActionListener(ActionListener a) It is used to add the ActionListener.

void addItemListener(ItemListener i) It is used to add the ItemListener.

Program

https://www.javatpoint.com/java-actionlistener
https://www.javatpoint.com/java-itemlistener
Programs/Chapter2/JComboExample.java

JList

 The object of JList class represents a list of

text items.

 The list of text items can be set up so that the

user can choose either one item or multiple

items.

 It inherits JComponent class.

Constructor Description

JList() Creates a JList with an empty, read-only,

model.

JList(ary[] listData) Creates a JList that displays the

elements in the specified array.

JList(ListModel<ary> dataModel) Creates a JList that displays elements

from the specified, non-null, model

JList(Vector<?> listData) Constructs a JList that displays the

elements in the specified Vector.

Methods Description

void

addListSelectionListener(ListSelectionLi

stener listener)

It is used to add a listener to the list, to

be notified each time a change to the

selection occurs.

int getSelectedIndex() It is used to return the smallest selected

cell index.

ListModel getModel() It is used to return the data model that

holds a list of items displayed by the

JList component.

void setListData(Object[] listData) It is used to create a read-only ListModel

from an array of objects.

Program

Programs/Chapter2/JListExample.java

JTabbedPane

 The JTabbedPane class is used to switch

between a group of components by clicking

on a tab with a given title or icon.

 It inherits JComponent class.

Constructor Description

JTabbedPane() Creates an empty TabbedPane with a

default tab placement of

JTabbedPane.Top.

JTabbedPane(int tabPlacement) Creates an empty TabbedPane with a

specified tab placement.

JTabbedPane(int tabPlacement, int

tabLayoutPolicy)

Creates an empty TabbedPane with a

specified tab placement and tab layout

policy.

Program

Programs/Chapter2/JTabbedPaneDemo1.java

JScrollPane

 A JscrollPane is used to make scrollable view

of a component. When screen size is limited,

we use a scroll pane to display a large

component or a component whose size can

change dynamically.

Constructor Purpose

JScrollPane() It creates a scroll pane. The Component

parameter, when present, sets the scroll

pane's client. The two int parameters, when

present, set the vertical and horizontal scroll

bar policies (respectively).

JScrollPane(Component)

JScrollPane(int, int)

JScrollPane(Component, int, int)

JTree

 The JTree class is used to display the tree

structured data or hierarchical data. JTree is

a complex component. It has a 'root node' at

the top most which is a parent for all nodes in

the tree. It inherits JComponent class.

Constructor Description

JTree() Creates a JTree with a sample model.

JTree(Object[] value) Creates a JTree with every element of the specified

array as the child of a new root node.

JTree(TreeNode root) Creates a JTree with the specified TreeNode as its

root, which displays the root node.

Program

Programs/Chapter2/JTreeEvents.java

JTable

 The JTable class is used to display data in

tabular form. It is composed of rows and

columns.

Constructor Description

JTable() Creates a table with empty cells.

JTable(Object[][] rows, Object[]

columns)

Creates a table with the specified data.

Program

Programs/Chapter2/JTableDemo.java

JProgressBar

 The JProgressBar class is used to display the

progress of the task. It inherits JComponent

class.
Constructor Description

JProgressBar() It is used to create a horizontal progress bar but no string

text.

JProgressBar(int min, int

max)

It is used to create a horizontal progress bar with the specified

minimum and maximum value.

JProgressBar(int orient) It is used to create a progress bar with the specified

orientation, it can be either Vertical or Horizontal by using

SwingConstants.VERTICAL and

SwingConstants.HORIZONTAL constants.

JProgressBar(int orient, int

min, int max)

It is used to create a progress bar with the specified

orientation, minimum and maximum value.

Method Description

void setStringPainted(boolean b) It is used to determine whether string should

be displayed.

void setString(String s) It is used to set value to the progress string.

void setOrientation(int orientation) It is used to set the orientation, it may be either

vertical or horizontal by using

SwingConstants.VERTICAL and

SwingConstants.HORIZONTAL constants.

void setValue(int value) It is used to set the current value on the

progress bar.

Program

Programs/Chapter2/ProgressBarExample.java

ToolTip

 You can create a tool tip for

any JComponent with setToolTipText() method.

This method is used to set up a tool tip for the

component.

For example, to add tool tip to PasswordField, you need to add only

one line of code:

field.setToolTipText("Enter your Password");

Program

Programs/Chapter2/ToolTipExample.java

