
Event Handling

12 Marks

Event Classes

 EventObject is a superclass of all events.

 AWTEvent is a superclass of all AWT events

that are handled by the delegation event

model.

The ActionEvent Class
 The ActionEvent class defines three type

ACTION_FIRST, ACTION_LAST and

ACTION_PERFORMED

 The ActionEvent class defines four integer constants

 ALT_MASK, CTRL_MASK, META_MASK, and

SHIFT_MASK

 ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

The Adjustment Event Class

AdjustmentEvent(Adjustable src, int id, int type, int data)

The ComponentEvent Class

ComponentEvent(Component src, int type)

The ContainerEvent Class

 The ContainerEvent class defines int constants

that can be used to identify them:

COMPONENT_ADDED and COMPONENT_REMOVED

ContainerEvent(Component src, int type, Component comp)

The FocusEvent Class

 These events are identified by the integer

constants

 FOCUS_GAINED and FOCUS_LOST

FocusEvent(Component src, int type)

FocusEvent(Component src, int type, boolean

temporaryFlag)

Focus Event(Component src, int type, boolean

temporaryFlag, Component other)

The InputEvent Class

 To test if a modifier was pressed at the time an

event is generated, use the

isAltDown(), isAltGraphDown(),

isControlDown(), isMetaDown(), and

isShiftDown() methods.

InputEvent defines several integer constants that represent any modifiers,

such as the control key being pressed, that might be associated with the event

The ItemEvent Class
 An ItemEvent is generated when a check box

or a list item is clicked or when a checkable

menu item is selected or deselected.

ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

The KeyEvent Class

 There are three types of key events, which

are identified by these integer constants:

KEY_PRESSED, KEY_RELEASED, and KEY_TYPED

There are many other integer constants that are defined by KeyEvent.

VK_0 through VK_9 and VK_A through VK_Z

KeyEvent(Component src, int type, long when, int modifiers, int code)

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

The MouseEvent Class

The TextEvent Class
 TextEvent defines the integer constant

TEXT_VALUE_CHANGED

The one constructor for this class is shown here:

TextEvent(Object src, int type)

The WindowEvent Class

Delegation Event Model

The ItemListener Interface

 void itemStateChanged(ItemEvent ie)

The KeyListener Interface

The general forms of these methods are shown

here:
void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

The MouseListener Interface

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

The MouseMotionListener Interface
void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

The TextListener Interface
void textChanged(TextEvent te)

The WindowFocusListener Interface

void windowGainedFocus(WindowEvent we)

void windowLostFocus(WindowEvent we)

The WindowListener Interface
void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

Adapter Classes

 Java adapter classes provide the default

implementation of listener interfaces.

 If you inherit the adapter class, you will not be

forced to provide the implementation of all the

methods of listener interfaces.

 It saves code.

Advantages of Adapter classes

 It assists the unrelated classes to work

combinedly.

 It provides ways to use classes in different

ways.

 It increases the transparency of classes.

 It provides a way to include related patterns

in the class.

 It provides a pluggable kit for developing an

application.

 It increases the reusability of the class.

Adapter classes

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

HierarchyBoundsAdapter HierarchyBoundsListener

https://www.javatpoint.com/java-windowlistener
https://www.javatpoint.com/java-keylistener
https://www.javatpoint.com/java-mouselistener
https://www.javatpoint.com/java-mousemotionlistener

java.awt.dnd Adapter classes

Adapter class Listener interface

DragSourceAdapter DragSourceListener

DragTargetAdapter DragTargetListener

javax.swing.event Adapter classes

Adapter class Listener interface

MouseInputAdapter MouseInputListener

InternalFrameAdapter InternalFrameListener

Program (Windows) Program (Mouse)

Programs/Chapter3/MyFrame4.java
Programs/Chapter3/AdapterDemo1.java

