
 Client-Side Scripting (Semester-V)

1

Unit 1

 Basics of JavaScript Programming

Marks: 12 (R-4, U-4, A-4)

Course Outcome: Create interactive web pages using program flow control structure.

Unit Outcome:

1) Create object to solve the given problem.

2) Develop javascript to implement the switch-case statement for the given problem.

3) Develop javascript to implement loop for solving the given iterative problem.

4) Display properties of the given object using getters and setters.

5) Develop program using basic features of javascript to solve the given problem.

Topics and Sub-topics:

 1.1 Features of JavaScript

 1.2 Object Name, Property, Method, Dot Syntax, Main Event

 1.3 Values and Variables

 1.4 Operators and Expressions

 1.5 if statement, if…else. If…elseif, Nested if

 1.6 switch… case statement

 1.7 Loop statement

 1.8 Querying and setting properties and Deleting properties,

 Property Getters and Setters

 Client-Side Scripting (Semester-V)

2

Introduction:

The scripts can be written in two forms, at the server end (back end) or at the client end

(server end). The main difference between server-side scripting and client-side scripting

is that the server-side scripting involves server for its processing. On the other hand,

client-side scripting requires browsers to run the scripts on the client machine but does

not interact with the server while processing the client-side scripts.

A script is generally a series of program or instruction, which has to be executed on other

program or application. As we know that the web works in a client-server environment.

The client-side script executes the code to the client side which is visible to the users while

a server-side script is executed in the server end which users cannot see.

Source: https://techdifferences.com/difference-between-server-side-scripting-and-client-

side-scripting.html

Server-side scripting is a technique of programming for producing the code which can

run software on the server side, in simple words any scripting or programming that can

run on the web server is known as server-side scripting.

The operations like customization of a website, dynamic change in the website content,

response generation to the user’s queries, accessing the database, and so on are

performed at the server end.

The server-side scripting constructs a communication link between a server and a client

(user). Earlier the server-side scripting is implemented by the CGI (Common Gateway

Interface) scripts. The CGI was devised to execute the scripts from programming

languages such as C++ or Perl on the websites.

 Client-Side Scripting (Semester-V)

3

The server-side involves four parts: server, database, API’s and back-end web software

developed by the server-side scripting language. When a browser sends a request to the

server for a webpage consisting of server-side scripting, the web server processes the

script prior to serving the page to the browser. Here the processing of a script could

include extracting information from a database, making simple calculations, or choosing

the appropriate content that is to be displayed in the client end. The script is being

processed and the output is sent to the browser. The web server abstracts the scripts from

the end user until serving the content, which makes the data and source code more

secure.

The Programming languages for server-side programming are:

1) PHP

2) C++

3) Java and JSP

4) Python

5) Ruby

Client-side scripting is performed to generate a code that can run on the client end

(browser) without needing the server-side processing.

Basically, these types of scripts are placed inside an HTML document. The client-side

scripting can be used to examine the user’s form for the errors before submitting it and

for changing the content according to the user input.

In Client-side scripting, the web requires three elements for its functioning which are,

client, database and server.

The effective client-side scripting can significantly reduce the server load. It is designed

to run as a scripting language utilizing a web browser as a host program. For example,

when a user makes a request via browser for a webpage to the server, it just sent the

HTML and CSS as plain text, and the browser interprets and renders the web content in

the client end.

The Programming languages for client-side programming are:

1) Javascript

2) VBScript

3) HTML

4) CSS (Cascading Style Sheet)

5) AJAX

 Client-Side Scripting (Semester-V)

4

Comparison: Server-side vs. Client-side scripting

 BASIS FOR

COMPARISON
SERVER-SIDE SCRIPTING CLIENT-SIDE SCRIPTING

Basic Works in the back end which

could not be visible at the client

end.

Works at the front end and script

are visible among the users.

Processing Requires server interaction. Does not need interaction with

the server.

Languages

involved

PHP, ASP.net, Ruby on Rails,

Python, etc.

HTML, CSS, JavaScript, etc.

Affect Could effectively customize the

web pages and provide dynamic

websites.

Can reduce the load to the

server.

Security Relatively secure. Insecure.

Why we use Javascript?

Using HTML, we can only design a web page but you cannot run any logic on web

browser like addition of two numbers, check any condition, looping statements (for,

while), decision making statement (if-else) at client side. All these are not possible using

HTML So for perform all these tasks at client side you need to use JavaScript.

Where JavaScript is Used?

There are too many web applications running on the web that are using JavaScript

technology like Gmail, Facebook, twitter, google map, YouTube etc.

Following are some uses of JavaScript:

• Client-side validation

• Dynamic drop-down menus

• Displaying data and time

• Validate user input in an HTML form before sending the data to a server.

 Client-Side Scripting (Semester-V)

5

• Build forms that respond to user input without accessing a server.

• Change the appearance of HTML documents and dynamically write HTML into

separate Windows.

• Open and close new windows or frames.

• Manipulate HTML "layers" including hiding, moving, and allowing the user to drag

them around a browser window.

• Build small but complete client-side programs.

• Displaying popup windows and dialog boxes (like alert dialog box, confirm dialog

box and prompt dialog box)

• Displaying clocks etc.

1.1 Features of JavaScript:

JavaScript is a client-side technology, it is mainly used for gives client-side validation, but

it has lot of features which are given below;

• JavaScript is an object-based scripting language.

• Giving the user more control over the browser.

• It Handling dates and time.

• It Detecting the user's browser and OS,

• It is light weighted.

• JavaScript is a scripting language and it is not java.

• JavaScript is interpreter-based scripting language.

• JavaScript is case sensitive.

• JavaScript is object-based language as it provides predefined objects.

• Every statement in JavaScript must be terminated with semicolon (;).

• Most of the JavaScript control statements syntax is same as syntax of control

statements in C language.

• An important part of JavaScript is the ability to create new functions within scripts.

Declare a function in JavaScript using function keyword.

• The concept of class and OOPs has been more refined. Also, in JavaScript, two

important principles with OOP in JavaScript are Object Creation patterns

 Client-Side Scripting (Semester-V)

6

(Encapsulation) and Code Reuse patterns (Inheritance). Although JavaScript

developers rarely use this feature but its there for everyone to explore.

• JavaScript is platform-independent or we can say it is portable; which simply means

that you can simply write the script once and run it anywhere and anytime. In

general, you can write your JavaScript applications and run them on any platform

or any browser without affecting the output of the Script.

Advantages of JavaScript:

• Speed: Client-side JavaScript is very fast because it can be run immediately within

the client-side browser. Unless outside resources are required, JavaScript is

unhindered by network calls to a backend server.

• Simplicity: JavaScript is relatively simple to learn and implement.

• Popularity: JavaScript is used everywhere on the web.

• Interoperability: JavaScript plays nicely with other languages and can be used in

a huge variety of applications.

• Server Load: Being client-side reduces the demand on the website server.

• Light-weight and interpreted: JavaScript is a lightweight scripting language

because it is made for data handling at the browser only. Since it is not a general-

purpose language so it has a limited set of libraries. Also, as it is only meant for

client-side execution and that too for web applications, hence the lightweight

nature of JavaScript is a great feature. JavaScript is an interpreted language which

means the script written inside JavaScript is processed line by line. These Scripts

are interpreted by JavaScript interpreter which is a built-in component of the Web

browser. But these days many JavaScript engines in browsers like the V8 engine in

chrome uses just in time compilation for JavaScript code.

• Gives the ability to create rich interfaces.

• Client-side Validations: This is a feature which is available in JavaScript since

forever and is still widely used because every website has a form in which users

enter values, and to make sure that users enter the correct value, we must put

proper validations in place, both on the client-side and on the server-side.

JavaScript is used for implementing client-side validations.

 Client-Side Scripting (Semester-V)

7

Disadvantages of JavaScript:

• Security: As the code executes the user’s computer, in some cases it can be

exploited for malicious purpose.

• Javascript done not read and write the files.

• Javascript can not be used for networking applications.

• Javascript does not have multi-threading and multi-processing capabilities.

• Javascript does not support overloading and overriding.

1.2 Object Name, Property, Method, Dot Syntax, Main Event:

JavaScript is an Object based scripting language.

A JavaScript object is a collection of named values.

These named values are usually referred to as properties of the object.

A JavaScript objects are collection of properties and methods.

✓ A Methods is a function that is a member of an object.

✓ A Property is a value or set of values that is the member of an object.

In JavaScript, almost "everything" is an object.

✓ Booleans can be objects (if defined with the new keyword)

✓ Numbers can be objects (if defined with the new keyword)

✓ Strings can be objects (if defined with the new keyword)

✓ Dates are always objects.

✓ Maths are always objects

✓ Regular expressions are always objects.

✓ Arrays are always objects.

✓ Functions are always objects.

✓ Objects are always objects.

Object Name:

Each object is uniquely identified by a name or ID.

With JavaScript, you can define and create your own objects.

There are different ways to create new objects:

A. Define and create a single object, using an object literal.

• Using an object literal, you both define and create an object in one statement.

• An object literal is a list of names: value pairs (like age:10) inside curly braces {}.

• The following example creates a new JavaScript object with 3 properties:

 Client-Side Scripting (Semester-V)

8

var person = {

 firstName: “Hhh",

 lastName: “Bbb",

 age: 10

};

In above example, person is an object and firstName , lastName and age are three

properties.

“Hhh” , “Bbb” and 10 these are values associated with properties.

Code:

<html>

<body>

<script>

emp={id:"VP-179",name:"Aaa Bbb",salary:50000}

document.write(emp.id+" "+emp.name+" "+emp.salary);

</script>

</body>

</html>

Output:

B. Define and create a single object, with the keyword “new” OR by creating instance

of Object

new keyword is used to create object.

Syntax: var objectname=new Object();

Example:

var person = new Object();

person.firstName = “Hhh";

person.age = 10;

Code:

<html>

<body>

<script>

var emp=new Object();

VP-179 Aaa Bbb 50000

 Client-Side Scripting (Semester-V)

9

emp.id="VP-179";

emp.name="Aaa ";

emp.salary=50000;

document.write(emp.id+" "+emp.name+" "+emp.salary);

</script>

</body>

</html>

Output:

C. Define an object constructor, and then create objects of the constructed type.

Here, you need to create function with arguments.

Each argument value can be assigned in the current object by using this keyword.

The this keyword refers to the current object.

Example:

function person(firstName, lastName, age)

{

this. firstName = firstName;

this. lastName = lastName;

this. age = age;

}

p=new person(“aaa”,”vvv”,10);

document.write(p.firstName+" "+p.lastName+" "+p.age);

Code:

<html>

 <body>

<script>

function emp(id,name,salary)

{

this.id=id;

this.name=name;

this.salary=salary;

VP-179 Aaa 50000

 Client-Side Scripting (Semester-V)

10

}

e=new emp("VP-179","Aaa ",50000);

document.write(e.id+" "+e.name+" "+e.salary);

</script>

</body>

 </html>

Output:

Types of Objects:

• Native Objects/ Built-in Objects: are those objects supplied by JavaScript.

Examples of these are Math, Date, String, Number, Array, Image, etc.

1) Math:

Math Properties

Math

Property

Description

SQRT2 Returns square root of 2.

PI Returns Π value.

E Returns Euler's Constant.

LN2 Returns natural logarithm of 2.

LN10 Returns natural logarithm of 10.

LOG2E Returns base 2 logarithm of E.

LOG10E Returns 10 logarithm of E.

Code:

<html>

<head>

 <title>JavaScript Math Object Properties</title>

 </head>

 <body>

<script type="text/javascript">

var value1 = Math.E;

document.write("E Value is :" + value1 + "
");

var value3 = Math.LN10;

VP-179 Aaa 50000

 Client-Side Scripting (Semester-V)

11

document.write("LN10 Value is :" + value3 + "
");

var value4 = Math.PI;

 document.write("PI Value is :" + value4 + "
");

</script>

 </body>

</html>

Output:

Math Methods

Math

Methods

Description

abs() Returns the absolute value of a number.

acos() Returns the arccosine (in radians) of a number.

ceil() Returns the smallest integer greater than or equal to a number.

cos()

Returns cosine of a number.

 floor()

Returns the largest integer less than or equal to a number.

 log() Returns the natural logarithm (base E) of a number.

max() Returns the largest of zero or more numbers.

min() Returns the smallest of zero or more numbers.

pow() Returns base to the exponent power, that is base exponent.

Code:

<html>

<body>

 <script type="text/javascript">

 var value = Math.abs(-20);

document.write("ABS Value : " + value +"
");

 var value = Math.tan(5);

 document.write("TAN Value : " + value +"
");

 </script>

</body>

</html>

E Value is :2.718281828459045

LN10 Value is :2.302585092994046

PI Value is :3.141592653589793

 Client-Side Scripting (Semester-V)

12

Output:

2) Date

Date is a data type.

Date object manipulates date and time.

Date() constructor takes no arguments.

Date object allows you to get and set the year, month, day, hour, minute, second

and millisecond fields.

Syntax:

var variable_name = new Date();

Example:

var current_date = new Date();

Date Methods:

Date Methods

Description

Date() Returns current date and time.

getDate() Returns the day of the month.

getDay() Returns the day of the week.

getFullYear() Returns the year.

getHours() Returns the hour.

getMinutes() Returns the minutes.

getSeconds() Returns the seconds.

getMilliseconds() Returns the milliseconds.

getTime() Returns the number of milliseconds since January 1, 1970 at

12:00 AM.

getTimezoneOffset() Returns the timezone offset in minutes for the current locale.

getMonth() Returns the month.

setDate() Sets the day of the month.

setFullYear() Sets the full year.

setHours() Sets the hours.

setMinutes() Sets the minutes.

setSeconds() Sets the seconds.

ABS Value: 20

TAN Value : -3.380515006246586

 Client-Side Scripting (Semester-V)

13

setMilliseconds() Sets the milliseconds.

setTime() Sets the number of milliseconds since January 1, 1970 at 12:00

AM.

setMonth() Sets the month.

toDateString() Returns the date portion of the Date as a human-readable

string.

toLocaleString() Returns the Date object as a string.

toGMTString() Returns the Date object as a string in GMT timezone.

valueOf() Returns the primitive value of a Date object.

Code:

<html>

 <body>

 <h2>Date Methods</h2>

 <script type="text/javascript">

 var d = new Date();

 document.write("Locale String: " + d.toLocaleString()+"
");

document.write("Hours: " + d.getHours()+"
");

document.write("Day: " + d.getDay()+"
");

document.write("Month: " + d.getMonth()+"
");

document.write("FullYear: " + d.getFullYear()+"
");

document.write("Minutes: " + d.getMinutes()+"
");

</script>

</body>

</html>

Output:

Date Methods

Locale String: 7/3/2020, 5:23:19

PM

Hours: 17

Day: 5

Month: 6

FullYear: 2020

Minutes: 23

In above code, getMonth() will returns

6 since months starts from 0 that is

0-> January , 1->February

 2-> March , 3 ->April

And so on.

 Client-Side Scripting (Semester-V)

14

3) String

String objects are used to work with text.

It works with a series of characters.

Syntax:

var variable_name = new String(string);

Example:

var s = new String(string);

String Properties:

String properties

Description

length It returns the length of the string.

constructor It returns the reference to the String function

that created the object.

String Methods:

String methods

Description

charAt() It returns the character at the specified index.

charCodeAt() It returns the ASCII code of the character at the specified position.

concat() It combines the text of two strings and returns a new string.

indexOf() It returns the index within the calling String object.

match() It is used to match a regular expression against a string.

replace() It is used to replace the matched substring with a new substring.

search() It executes the search for a match between a regular expression.

slice() It extracts a session of a string and returns a new string.

split() It splits a string object into an array of strings by separating the

string into the substrings.

toLowerCase() It returns the calling string value converted lower case.

toUpperCase() Returns the calling string value converted to uppercase.

Code:

 Client-Side Scripting (Semester-V)

15

<html>

 <body>

<script type="text/javascript">

var str = "A JavaScript";

document.write("Char At: " + str.charAt(4)+"
");

document.write("CharCode At: " + str.charCodeAt(0)+"
");

document.write("Index of: " + str.indexOf(“p")+"
");

document.write("Lower Case: " + str.toLowerCase()+"
");

document.write("Upper Case: " + str.toUpperCase()+"
");

 </script>

</body> </html>

Output:

• Host Objects: are objects that are supplied to JavaScript by the browser environment.

Examples of these are window, document, forms, etc.

Window:

The window object represents a window in browser.

 An object of window is created automatically by the browser.

Window is the object of browser; it is not the object of javascript.

Window Methods:

Window

methods

Description

alert() displays the alert box containing message with ok button.

confirm() displays the confirm dialog box containing message with ok and cancel

button.

prompt() displays a dialog box to get input from the user along with with ok and

cancel button.

open() opens the new window.

Char At: v

CharCode At: 65

Index of: 10

Lower Case: a javascript

Upper Case: A JAVASCRIPT

 Client-Side Scripting (Semester-V)

16

close() closes the current window.

Code:

<script type="text/javascript">

function msg()

{

var a= window.prompt("Who are you?");

window.alert("I am "+a);

}

</script>

<input type="button" value="click" onclick="msg()">

Output:

• User-Defined Objects: are those that are defined by you, the programmer.

Property:

▪ Properties are the values associated with a JavaScript object.

▪ A JavaScript object is a collection of unordered properties.

 Client-Side Scripting (Semester-V)

17

▪ Properties can usually be changed, added, and deleted, but some are read only.

▪ The syntax for accessing the property of an object is:

objectName.property // person.age

objectName["property"] // person["age"]

objectName[expression] // x = "age"; person[x]

Dot Operator:

The properties and methods associated with any object can be accessed by using

dot(.) Operator.

Example, emp.id or op.add();

Dot operator is used to how to interact with objects, methods, events and

properties.

Dot operator is also used to add new property.

Example, emp.designation=“Lecturer”;

Code:

<html>

<body>

<script>

var person =

{

 firstname:"Hhh",

 age:10

};

person.std = "Fifth"; //adding new property as “std”

document.write(person.firstname+" "+"is in "+person.std+" standard"); //Accessing

properties with dot

</script>

</body> </html>

Output:

Methods:

JavaScript methods are actions that can be performed on objects.

A JavaScript function is a block of code designed to perform a particular task.

Hhh is in Fifth standard

 Client-Side Scripting (Semester-V)

18

A JavaScript function is defined with the function keyword, followed by a name,

followed by parentheses ().

The parentheses may include parameter names separated by commas:

(parameter1, parameter2, ...)

The code to be executed, by the function, is placed inside curly brackets: {}

Syntax:

function name(parameter1, parameter2, parameter3)

{

 // code to be executed

}

Code: simple method to define a function

<html>

<body>

<script>

function op_add(p1, p2)

{

 return p1 + p2;

}

document.write("Addition is="+op_add(4, 5));

</script>

</body>

</html>

Output:

Code: define a function as a property

<script>

var person =

{

 firstname:"Hhh",

Addition is=9

 Client-Side Scripting (Semester-V)

19

 lastname:"Bbb",

 Fullname:function() // define a function as a property

 {

 return this.firstname+" "+this.lastname;

 }

};

document.write("Person Detail is="+person.Fullname());

</script>

Output:

Code: define a function as an expression

<script>

var x = function (a, b) // function as an expression

{

return a * b ;

}

document.write("function returns= " +x(4, 5));

</script>

Output:

Main Event:

• An event is an action performed by user or web browser.

• In order to make a web pages more interactive, the script needs to be accessed

the contents of the document and know when the user is interacting with it.

• Events may occur due to: 1) a document loading

 2) user clicking on mouse button

 3) browser screen changing size

Here are some examples of HTML events:

• An HTML web page has finished loading

• An HTML input field was changed

Person Detail is=Hhh Bbb

function returns= 20

 Client-Side Scripting (Semester-V)

20

• An HTML button was clicked

Event handlers can be used to handle, and verify, user input, user actions, and browser

actions:

Event

Description

onchange An HTML element has been changed

onclick The user clicks an HTML element

onmouseover The user moves the mouse over an HTML element

onmouseout The user moves the mouse away from an HTML element

onkeydown The user pushes a keyboard key

onload The browser has finished loading the page

Code:

<html>

<head>

<script type="text/javascript">

function msg()

{

 alert("Hello IF5I students");

}

</script>

</head>

<body>

<center>

<p><h1>Welcome to Client-side scripting</h1></p>

<form>

<input type="button" value="click" onclick ="msg()"/> // onclick event

</form>

</body>

</html>

Output:

 Client-Side Scripting (Semester-V)

21

DOM getElementById() Method

The getElementById() method returns the elements that has given ID which is passed to

the function.

 This function is widely used in web designing to change the value of any particular

element or get a particular element.

Syntax: document. getElementById(element_id) ;

Parameter: This function accepts single parameter element_id which is used to hold the

ID of element.

Return Value: It returns the object of given ID. If no element exists with given ID then it

returns null.

Code:

<html>

<body>

<p id="demo">Click the button to change the color of this paragraph.</p>

<button onclick="myFunction()">change color</button>

<script>

function myFunction()

{

 var x = document.getElementById("demo");

 Client-Side Scripting (Semester-V)

22

 x.style.color = "red";

}

</script>

</body>

</html>

Output:

1.3 Values and Variables

• In JavaScript there are two types of scope:

o Local scope

o Global scope

• JavaScript has function scope: Each function creates a new scope.

• Scope determines the accessibility (visibility) of these variables.

• Variables defined inside a function are not accessible (visible) from outside

the function.

There are some rules while declaring a JavaScript variable (also known as identifiers).

• Name must start with a letter (a to z or A to Z), underscore(_), or dollar($)

sign.

• After first letter we can use digits (0 to 9), for example value1.

• JavaScript variables are case sensitive, for example x and X are different

variables.

We can say that variable is a container that can be used to store value and you need

to declare a variable before using it.

In JavaScript, the var keyword is used to declare a variable. Also, starting from ES6 we can

also declare variables using the let keyword.

JavaScript Syntax for Declaring a Variable

Following is the syntax for declaring a variable and assigning values to it.

var varible-name;

or

let varible-name;

 Client-Side Scripting (Semester-V)

23

We can also define a variable without using the semicolon too. Also, when we have to

define multiple variables, we can do it like this:

var x,y,z;

or

var x,y,z

JavaScript Variable Example:

Now let's take a simple example where we will declare a variable and then assign it a

value.

var emp_name;

var emp_name=”dhavan”;

JavaScript: Types of Variables

JavaScript supports two types of variables, they are:

• Local Variable

• Global Variable

You can use them according to the requirement in the application. Let's learn about both

JavaScript Local variables and JavaScript Global variables with examples.

1. JavaScript Local Variable

JavaScript Local variable is a variable that is declared inside a code block or a function

body or inside a loop body and it has scope within the code block or the function. In

simple words, the scope of a local variable is between the opening and closing curly

braces { }, when declared and defined inside a code block or a function body.

Starting from ES6 it is recommended to use the let keyword while declaring local

variables.

A JavaScript local variable is declared inside block or function.

It is accessible within the function or block only.

 For example:

<script>

function abc()

{

var x=10; //x is a local variable

 Client-Side Scripting (Semester-V)

24

}

</script>

JavaScript Global Variable

JavaScript Global Variable is a variable that is declared anywhere inside the

script and has scope for the complete script execution. Global variables are not

declared inside any block or function but can be used in any function, or block of code.

Its recommended that we use the var keyword to declare the global variables, starting

from ES6.

A JavaScript global variable is accessible from any function.

A variable i.e. declared outside the function or declared with window object is known

as global variable.

Code:

<html>

<body>

<script>

var data=200; //gloabal variable

function a()

{

document.write(data);

}

function b()

{

document.write(data);

}

a(); //calling JavaScript function

b();

</script>

</body>

</html>

Output:

200 200

 Client-Side Scripting (Semester-V)

25

 Client-Side Scripting (Semester-V)

26

Javascript let Keyword

In JavaScript, let is a keyword which is used to declare a local variable with block scope.

Unlike var keyword which declares global scope variables, with ECMAScript2016(ES6)

the let keyword was introduced to define local scope variables as defining all the variables

in global scope leads to a lot of problems while writing large JavaScript applications.

It allows you to declare limited scope variables that cannot be accessible outside of the

scope.

Let's take an example to understand the need of let keyword when we already

had var keyword to create variables in JavaScript. Suppose you are writing a big JavaScript

code which involves multiple loops, functions, and variables, as usual in all the loops you

used the same variable name for the counter which is i, and you used the var keyword to

define the variable i, now what will happen is, the variable i will carry on its changed value

throughout the whole script as it is a global variable and if you forget to re-initialize it to

zero anywhere, it will cause an error and your code will break. And you will have to put in

extra efforts to look for the error.

Whereas, if you define the counter variable i using the let keyword, its scope will be

limited to the loop only and when the first loop will end so will the counter variable. This

way, using let keyword makes more sense because we use very few global variables and

many local variables in general programming practice.

let does not create properties of the window object when declared globally.

The syntax for using the let keyword for defining a variable is the same as that of

the var keyword.

let var1 [= value1] [, var2 [= value2]] [, ..., varN [= valueN];

As shown in the syntax above, yes, we can use a single let keyword to define multiple

variables, but this is not new, we can do so using the var keyword too.

Let's see a few examples to see how this let keyword is used and how it works.

Use let inside a code block:

JavaScript variable declared inside a block { } cannot be accessed from outside the block,

if we have defined the variable using the let keyword. See the below example:

{

 let x = 2;

}

alert(x) // not accessible

https://www.studytonight.com/javascript/javascript-variables

 Client-Side Scripting (Semester-V)

27

Output:

uncaught ReferenceError: x is not defined

In the above example, the variable is accessible only inside the block. See the below

example, to see that:

{

 let x = 2;

 alert(x) // accessible

}

Output:

2

Use let inside a Loop:

It is more suitable for a loop, where we declare local variables to be used as counters. So,

the variable does not conflict with the code written outside of the loop. See the below

example:

let i = 5;

for(let i = 0; i < 10; i++) {

 // code

}

alert(i); // print 5

Output:

5

As you can see in the output it shows 5, even though the loop incremented the value

of i variable up to 10, that is because of the scope of the local variable i in the for loop

ending with the loop itself, hence it is not accessible outside the loop.

Use let inside a Function:

As we know, let keyword declares the local scope variable. So variable declared inside the

function will retain within the function scope. If we will try accessing such variables from

outside the function, we will get an error. See the below example:

function show()

{

 Client-Side Scripting (Semester-V)

28

 let amount = 2500; // Function Scope

}

alert(amount) // not accessible

Output:

Uncaught ReferenceError: amount is not defined

JavaScript let vs var Keyword

The let and var, both keywords are used to declare variables, but the main difference is

the scope of the declared variables.

A variable declared inside a block using var is accessible outside of the block as it has a

global scope but a variable declared using the let keyword has a local scope. Let's see an

example:

{

 let amount = 2500; // block Scope

 var withdraw = 2000; // global scope

}

document.write(withdraw) // accessible

document.write(amount) // not accessible

Output:

2000

Uncaught ReferenceError: amount is not defined

JavaScript const keyword is used to define constant values that cannot changed once a

value is set. The value of a constant can't be changed through reassignment, and it can't

be redeclared.

The scope of const is block-scoped it means it cannot be accessed from outside of block.

In case of scope, it is much like variables defined using the let statement.

Constants can be either global or local to the block in which it is declared. Global constants

do not become properties of the window object, unlike var variables.

JavaScript const Keyword:

 Syntax

Below we have the syntax to define a constant value in JavaScript.

 Client-Side Scripting (Semester-V)

29

const name1 = value1 [, name2 = value2 [, ... [, nameN = valueN]]]

We don't have to use var or let keyword while using the const keyword. Also, we

can define a list or a simple value or a string etc as a constant.

Lets understand, how to create constant in JavaScript program. See the below example:

{

 const Pi = 3.14;

 alert(Pi);

}

Output:

3.14

Let's try another example where we will try changing the value of the constant and see if

we allowed to reassign value or not.

{

 const Pi = 3.14;

 alert(Pi);

 // Reassign value

 Pi = 3.143;

 alert(Pi);

}

Output:

3.14

Uncaught TypeError: Assignment to constant variable.

The scope of the variable defined using const keyword is same as that of a variable

declared using the let keyword. So, constant declared inside a block will not accessible

outside of that block. Let's take an example and see:

{

 const Pi = 3.14;

 alert(Pi);

}

// outside block

alert(Pi); // error

Output:

3.14

Uncaught ReferenceError: Pi is not defined

 Client-Side Scripting (Semester-V)

30

Data Types

• JavaScript provides different data types to hold different types of values.

• There are two types of data types in JavaScript:

o Primitive data type

o Non-primitive (reference) data type/ Composit Data

Types

• JavaScript is a dynamic type language; means you don't need to specify type of

the variable.

• You need to use var here to specify the data type.

• It can hold any type of values such as numbers, strings etc.

• For example: var a=40;//holding number

• var b=“Info Technology”//holding string

Data Types: Primitive

Primitive data types can hold only one value at a time.

1) The String Data Type

The string data type is used to represent textual data (i.e. sequences of

characters).

Strings are created using single or double quotes surrounding one or more

characters, as shown below:

var a = ‘Welcome'; // using single quotes

var b = “Welcome”;// using double quotes

2) The Number Data Type

✓ The number data type is used to represent positive or negative

numbers with or without decimal place.

✓ The Number data type also includes some special values which

 are: Infinity,-Infinity, NaN(Not a Number)

✓ Example,

var a = 25; // integer

JavaScript Data Types

Primitive (Primary)

String Number Boolean Undefined Null

Non-Primitive
(Composite)

Object Array Function

 Client-Side Scripting (Semester-V)

31

var b = 80.5; // floating-point number

var c = 4.25e+6; // exponential notation, same as 4.25e6 or 4250000

var d = 4.25e-6; // exponential notation, same as 0.00000425

3) The Boolean Data Type

✓ The Boolean data type can hold only two values: True/False

✓ Example,

var a = 2, b = 5, c = 10;

alert(b > a) // Output: true

alert(b > c) // Output: false

4) The Undefined Data Type

✓ The undefined data type can only have one value-the special value “undefined”.

✓ If a variable has been declared, but has not been assigned a value, has the

value ”undefined”.

✓ Example,

var a;

var b = “Welcome”;

alert(a) // Output: undefined

alert(b) // Output: Welcome

5) The Null Data Type

✓ A Null value means that there is no value.

✓ It is not equivalent to an empty string (“ “) or zero or it is simply nothing.

✓ Example,

var a = null;

alert(a); // Output: null

var b = "Hello World!“

alert(b); // Output: Hello World!

b = null;

alert(b) // Output: null

Data Types: Non-primitive

1) The Object Data Type

✓ a complex data type that allows you to store collections of data.

 Client-Side Scripting (Semester-V)

32

✓ An object contains properties, defined as a key-value pair.

✓ A property key (name) is always a string, but the value can be any data type, like

strings, numbers, Boolean, or complex data types like arrays, function and other

objects.

✓ Example,

var car =

{ model: “SUZUKI", color: “WHITE", model_year: 2019 }

2) The Array Data Type

✓ An array is a type of object used for storing multiple values in single variable.

✓ Each value (also called an element) in an array has a numeric position, known as

its index, and it may contain data of any data type-numbers, strings, Booleans,

functions, objects, and even other arrays.

✓ The array index starts from 0, so that the first array element is arr [0].

✓ The simplest way to create an array is by specifying the array elements as a

comma-separated list enclosed by square brackets, as shown in the example

below:

✓ var cities = ["London", "Paris", "New York"];

✓ alert(cities[2]); // Output: New York

✓ var a = ["London", 500, ”aa56”, 5.6];

3) The Function Data Type

✓ The function is callable object that executes a block of code.

✓ Since functions are objects, so it is possible to assign them to variables, as shown

in the example below:

var ab = function()

{

return “Welcome”;

}

alert(typeof ab); //output: function

alert(ab()); //output:Welcome

Code:

<html>

<body>

<h1>JavaScript Array</h1>

 Client-Side Scripting (Semester-V)

33

<script>

var stringArray = ["one", "two", "three"];

var mixedArray = [1, "two", "three", 4];

document.write(stringArray+"
");

document.write(mixedArray);

</script>

</body>

</html>

Output:

Values/Literals

They are types that can be assigned a single literal value such as the number 5.7, or

a string of characters such as "hello".

Types of Literals:

• Array Literal

• Integer Literal

• Floating number Literal

• Boolean Literal (include True and False)

• Object Literal

• String Literal

Array Literal:

• an array literal is a list of expressions, each of which represents an array

element, enclosed in a pair of square brackets ' [] ‘ .

• When an array is created using an array literal, it is initialized with the specified

values as its elements, and its length is set to the number of arguments

specified.

• Creating an empty array :

var tv = [];

Creating an array with four elements.

var tv = [“LG", “Samsung", “Sony", “Panasonic"]

✓ Comma in array literals:

• In the following example, the length of the array is four, and tv[0] and tv[2] are

undefined.

• var tv = [, “Samsung“, , “Panasonic"]

• This array has one empty element in the middle and two elements with values.

JavaScript Array

one,two,three

1,two,three,4

 Client-Side Scripting (Semester-V)

34

 (tv[0] is “LG", tv[1] is set to undefined, and tv[2] is “Sony")

Var tv = [“LG", ,“Sony",]

Integer Literal:

 An integer must have at least one digit (0-9).

• No comma or blanks are allowed within an integer.

• It does not contain any fractional part.

• It can be either positive or negative if no sign precedes it is assumed to

be positive.

 In JavaScript, integers can be expressed in three different bases.

 1. Decimal (base 10)

 Decimal numbers can be made with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and there will

be no leading zeros.

 Example: 123, -20, 12345

 2. Hexadecimal (base 16)

 Hexadecimal numbers can be made with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and letters

A, B, C, D, E, F or a, b, c, d, e, f.

 A leading 0x or 0X indicates the number is hexadecimal.

 Example: 7b, -14, 3039

 3. Octal (base 8)

 Octal numbers can be made with the digits 0, 1, 2, 3, 4, 5, 6, 7. A leading 0 indicates

the number is octal.

 Example: 0173, -24, 30071

Floating number Literal:

 A floating number has the following parts.

• A decimal integer.

• A decimal point ('.').

• A fraction.

• An exponent.

 The exponent part is an "e" or "E" followed by an integer, which can be signed

(preceded by "+" or "-").

 Example of some floating numbers:

• 8.2935

• -14.72

• 12.4e3 [Equivalent to 12.4 x 103]

• 4E-3 [Equivalent to 4 x 10-3 => .004]

 Client-Side Scripting (Semester-V)

35

Object Literal:

 An object literal is zero or more pairs of comma-separated list of property names

and associated values, enclosed by a pair of curly braces.

In JavaScript an object literal is declared as follows:

1. An object literal without properties:

 var userObject = { }

2. An object literal with a few properties :

 var student = {

First-name : "Suresy",

Last-name : "Rayy",

Roll-No : 12

};

Syntax Rules

• There is a colon (:) between property name and value.

• A comma separates each property name/value from the next.

• There will be no comma after the last property name/value pair.

String Literal:

• JavaScript has its own way to deal with string literals.

• A string literal is zero or more characters, either enclosed in single quotation (')

marks or double quotation (") marks. You can also use + operator to join strings.

• The following are the examples of string literals:

➢ string1 = "w3resource.com"

string1 = 'w3resource.com’

➢ string1 = "1000“

• In addition to ordinary characters, you can include special characters in strings, as

shown in the following.

➢ string1 = "First line. \n Second line."

Special characters in JavaScript:

character

Description

\’ Single quote

\” Double quote

\\ Backslash

 Client-Side Scripting (Semester-V)

36

\b Backspace

\f Form Feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

Comments in JavaScript:

The JavaScript comments are meaningful way to deliver message.

 It is used to add information about the code, warnings or suggestions so that end

user can easily interpret the code.

The JavaScript comment is ignored by the JavaScript engine i.e. embedded in the

browser.

There are two types of comments in JavaScript.

1. Single-line Comment

It is represented by double forward slashes (//).

It can be used before and after the statement.

Example,

<script>

// It is single line comment

document.write("hello javascript");

 </script>

2. Multi-line Comment

It can be used to add single as well as multi line comments.

It is represented by forward slash with asterisk then asterisk with forward slash.

Example,

<script>

/* It is multi line comment.

It will not be displayed */

document.write("example of javascript multiline comment");

</script>

 Client-Side Scripting (Semester-V)

37

1.4 Operators and Expression

 JavaScript operators are symbols that are used to perform operations on operands.

1. Arithmetic Operators

2. Comparison (Relational) Operators

3. Bitwise Operators

4. Logical Operators

5. Assignment Operators

6. Special Operators

 1) Arithmetic Operators: used to perform arithmetic operations on the operands.

Operator

Description Example

 + Addition 10+20 = 30

 - Subtraction 20-10 = 10

 * Multiplication 10*20 = 200

 / Division 20/10 = 2

 % Modulus 20%10 = 0

 ++ Increment var a=10; a++;

Now a = 11 -- Decrement var a=10; a--;

Now a = 9

 Code:

 <html>

 <body>

 <script type = "text/javascript">

 var a = 33;

 var b = 10;

 var c = "Test";

 document.write("a + b = ");

 result = a + b;

 document.write(result+"
");

 Client-Side Scripting (Semester-V)

38

 document.write("a - b = ");

 result = a - b;

 document.write(result+"
");

 document.write("a / b = ");

 result = a / b;

 document.write(result+"
");

 document.write("a % b = ");

 result = a % b;

 document.write(result+"
");

 document.write("a + b + c = ");

 result = a + b + c;

 document.write(result+"
");

 a = ++a;

 document.write("++a = ");

 result = ++a;

 document.write(result+"
");

 b = --b;

 document.write("--b = ");

 result = --b;

 document.write(result+"
");

 </script>

 </body>

 </html>

 Output:

a + b = 43

a - b = 23

a / b = 3.3

a % b = 3

a + b + c = 43Test

++a = 35

--b = 8

 Client-Side Scripting (Semester-V)

39

2) Comparison (Relational) Operators: compares the two operands

Operator

Description Example

 == Is equal to 10==20 = false

 === Identical (equal and of same type) 10==20 = false

 != Not equal to 10!=20 = true

 !== Not Identical 20!==20 = false

 > Greater than 20>10 = true

 >= Greater than or equal to 20>=10 = true

 < Less than 20<10 = false

 <= Less than or equal to 20<=10 = false

 Code:

 <html>

 <body>

 <script type = "text/javascript">

 var a = 10;

 var b = 20;

 document.write("(a == b) => ");

 result = (a == b);

 document.write(result+"
");

 document.write("(a < b) => ");

 result = (a < b);

 document.write(result+"
");

 document.write("(a > b) => ");

 result = (a > b);

 document.write(result+"
");

 Client-Side Scripting (Semester-V)

40

 document.write("(a != b) => ");

 result = (a != b);

 document.write(result+"
");

 document.write("(a >= b) => ");

 result = (a >= b);

 document.write(result+"
");

 document.write("(a <= b) => ");

 result = (a <= b);

 document.write(result+"
");

 </script>

 </body>

 </html>

 Output:

3) Bitwise Operator: perform bitwise operations on operands

Operator

Description Example

 & Bitwise AND (10==20 &

20==33) = false

 | Bitwise OR (10==20 |

20==33) = false

 ^ Bitwise XOR (10==20 ^

20==33) = false

 ~ Bitwise NOT (~10) = -10

(a == b) => false

(a < b) => true

(a > b) => false

(a != b) => true

(a >= b) => false

(a <= b) => true

 Client-Side Scripting (Semester-V)

41

 << Bitwise Left Shift (10<<2) = 40

 >> Bitwise Right Shift (10>>2) = 2

 >>> Bitwise Right Shift

with Zero

 (10>>>2) = 2

 Code:

 <html>

 <body>

 <script type="text/javascript">

 var a = 2; // Bit presentation 10

 var b = 3; // Bit presentation 11

 document.write("(a & b) => ");

 result = (a & b);

 document.write(result+"
");

 document.write("(a | b) => ");

 result = (a | b);

 document.write(result+"
");

 document.write("(a ^ b) => ");

 result = (a ^ b);

 document.write(result+"
");

 document.write("(~b) => ");

 result = (~b);

 document.write(result+"
");

 document.write("(a << b) => ");

 result = (a << b);

 document.write(result+"
");

 Client-Side Scripting (Semester-V)

42

 document.write("(a >> b) => ");

 result = (a >> b);

 document.write(result+"
");

 </script>

 </body>

 </html>

 Output:

4) Logical Operator:

Operator

Description Example

 && Logical AND (10==20 && 20==33) = false

 || Logical OR (10==20 || 20==33) = false

 ! Logical Not !(10==20) = true

 Code:

 <html>

 <body>

 <script type = "text/javascript">

 var a = true;

 var b = false;

 document.write("(a && b) => ");

 result = (a && b);

(a & b) => 2

(a | b) => 3

(a ^ b) => 1

(~b) => -4

(a << b) => 16

(a >> b) => 0

 Client-Side Scripting (Semester-V)

43

 document.write(result+"
");

 document.write("(a || b) => ");

 result = (a || b);

 document.write(result+"
");

 document.write("!(a && b) => ");

 result = (!(a && b));

 document.write(result+"
");

 </script>

 </body>

 </html>

 Output:

<!DOCTYPE html>

<html>

<body>

 <h1>Demo: JavaScript Logical Operators</h1>

 <p id="p1"></p>

 <p id="p2"></p>

 <p id="p3"></p>

 <p id="p4"></p>

 <p id="p5"></p>

 <script>

 var a = 5, b = 10;

 document.getElementById("p1").innerHTML = (a != b) && (a < b);

 document.getElementById("p2").innerHTML = (a > b) || (a == b);

 document.getElementById("p3").innerHTML = (a < b) || (a == b);

 document.getElementById("p4").innerHTML = !(a < b);

 document.getElementById("p5").innerHTML = !(a > b);

 </script>

</body>

</html>

(a && b) => false

(a || b) => true

!(a && b) => true

 Client-Side Scripting (Semester-V)

44

5) Assignment Operator:

Operator

Description Example

 = Assign 10+10 = 20

 += Add and assign var a=10; a+=20; Now a = 30

 -= Subtract and assign var a=20; a-=10; Now a = 10

 = Multiply and assign var a=10; a=20; Now a = 200

 /= Divide and assign var a=10; a/=2; Now a = 5

 %= Modulus and assign var a=10; a%=2; Now a = 0

 Code:

 <html>

 <body>

 <script type="text/javascript">

 var a = 33;

 var b = 10;

 document.write("Value of a => (a = b) => ");

 result = (a = b);

 document.write(result+"
");

 document.write("Value of a => (a += b) => ");

 result = (a += b);

 document.write(result+"
");

 Client-Side Scripting (Semester-V)

45

 document.write("Value of a => (a -= b) => ");

 result = (a -= b);

 document.write(result+"
");

 document.write("Value of a => (a *= b) => ");

 result = (a *= b);

 document.write(result+"
");

 document.write("Value of a => (a /= b) => ");

 result = (a /= b);

 document.write(result+"
");

 document.write("Value of a => (a %= b) => ");

 result = (a %= b);

 document.write(result+"
");

 </script>

 </body>

 </html>

 Output:

Value of a => (a = b) => 10

Value of a => (a += b) => 20

Value of a => (a -= b) => 10

Value of a => (a *= b) => 100

Value of a => (a /= b) => 10

Value of a => (a %= b) => 0

 Client-Side Scripting (Semester-V)

46

6) Special Operator:

Operator

Description

 (?:) Conditional Operator/ternary returns value based on the condition.

 It is like if-else.

 , Comma Operator allows multiple expressions to be evaluated as

single statement

 delete Delete Operator deletes a property from the object

 in In Operator checks if object has the given property

 instanceof checks if the object is an instance of given type

 new creates an instance (object)

 typeof checks the type of object

 void it discards the expression's return value

 Code: typeof operator

 <html>

 <body>

 <script type = "text/javascript">

 var a = 10;

 var b = "Information";

 var c= function(x)

 {

 return x*x;

 }

 document.write(typeof a+"
"); // a=10 datatype is number

 document.write(typeof b+"
"); // b="Information" is a string

 document.write(typeof c+"
"); // c= function

 document.write(c(4));

 Client-Side Scripting (Semester-V)

47

 </script>

 </body>

 </html>

 Output:

Code: Ternary (? :) operator

 <script type = "text/javascript">

 var a = 10;

 var b = 20;

 r=(a>=b)? "a is large":"b is large";

 document.write(r);

 </script>

 Output:

 In above example, if else can be replaced with ternary operator.

JavaScript Operator Precedence and Associativity

Operator precedence determines the order in which operators are evaluated. Operators

with higher precedence are evaluated first. For example, the expression (3+4*5),

returns 23, because of multiplication operator(*) having higher precedence than

addition(+). Thus * must be evaluated first.

Operator associativity determines the order in which operators of the same precedence

are processed. For example, assignment operators are right-associative, so you can

write a=b=5, and with this statement, a and b are assigned the value 5.

The below table shows the precedence and associativity of operators. In this table,

precedence is from bottom to top i.e items at the bottom having low precedence and

precedence increases as we move to the top of the table.

number

string

function

16

b is large

<script type = "text/javascript">

 var a = 10;

 var b = 20;

 if(a>=b)

 document.write("a is large");

 else

 document.write("b is large");

 </script>

 Client-Side Scripting (Semester-V)

48

Operator type Operator (Symbol) Associativity

member
.

[]

left-to-right

new new right-to-left

function call () left-to-right

increment ++

decrement --

logical-not ! right-to-left

bitwise not ~ right-to-left

unary + + right-to-left

unary negation - right-to-left

typeof typeof right-to-left

void void right-to-left

delete delete right-to-left

multiplication * left to right

division / left to right

 Client-Side Scripting (Semester-V)

49

Operator type Operator (Symbol) Associativity

modulus % left to right

addition + left to right

subtraction - left to right

bitwise-shift <<

>>

>>>

left to right

relational <

<=

>

>=

left to right

in in left to right

instanceof instanceof left to right

equality ==

!=

===

!==

left to right

bitwise-and & left to right

bitwise-xor ^ left to right

 Client-Side Scripting (Semester-V)

50

Operator type Operator (Symbol) Associativity

bitwise-or | left to right

logical-and && left to right

logical-or || left to right

conditional ?: right to left

assignment =

+=

-=

*=

/=

%=

<<=

>>=

>>>=

&=

^=

|=

right to left

comma , left to right

Expression:

Any unit of code that can be evaluated to a value is an expression.

 Client-Side Scripting (Semester-V)

51

Since expressions produce values, they can appear anywhere in a program where

JavaScript expects a value such as the arguments of a function invocation.

Types of Expression:

1. Primary Expression:

Primary expressions refer to stand alone expressions such as literal values, certain

keywords and variable values.

'hello world'; // A string literal

23; // A numeric literal

true; // Boolean value true

sum; // Value of variable sum

this; // A keyword that evaluates to the current object.

2. Object and Array Initializers

Object and array initializers are expressions whose value is a newly created object

or array.

Object initializer expressions uses curly brackets, and each subexpression is

prefixed with a property name and a colon.

Example, var emp={ name:”Aaa”, branch:“IF”};

OR

var person={ };

person.name=“Aaa”;

person.branch=“IF”;

An array initializer is a comma-separated list of expressions surrounded with a

square bracket.

Example, var tv=[“LG”, ”Samsung”];

3. Property Access Expressions

A property access expression evaluates to the value of an object property or an

array element.

JavaScript defines two syntaxes for property access:

expression.identifier;

expression[identifier];

Example:

emp.firstName;

emp[lastName];

 Client-Side Scripting (Semester-V)

52

4. Function Definition Expression

A function expression is part of a variable assignment expression and may or may

not contain a name.

Since this type of function appears after the assignment operator =, it is evaluated as

an expression.

Function expressions are typically used to assign a function to a variable.

Function expressions are evaluated only when the interpreter reaches the line of

code where function expressions are located.

Example:

var sq=function (x)

{ return x*x;

}

5. Invocation Expression

An invocation expression is JavaScript’s syntax for calling (or executing) a function or

method.

It starts with a function expression that identifies the function to be called.

 The function expression is followed by an open parenthesis, a comma-separated list

of zero or more argument expressions, and a close parenthesis.

When an invocation expression is evaluated, the function expression is evaluated

first, and then the argument expressions are evaluated to produce a list of argument

values.

Example,

f(0) // f is the function expression; 0 is the argument expression

Math.max(x,y,z) // Math.max is the function; x, y and z are the

arguments.

 <script type = "text/javascript">

 Client-Side Scripting (Semester-V)

53

 var obj = { add: function(a, b)

 { return a + b; }

};alert(obj.add(4,5));delete obj.add;alert(obj.add(9,5)); </script>

1.5 if statement, if…else. If…elseif, Nested if

Conditional statements are used to perform different actions based on different

conditions. In JavaScript we have the following conditional statements:

1) if statement:

Use if statement to specify a block of JavaScript code to be executed if a condition is

true.

Syntax:

Example:

if (condition)
{
 //block of code to be executed if the condition is
true
}

<html>
<body>
<script>
if (new Date().getHours() < 18)
{
 document.write("Good day!");
}

</script>
</body>
</html>

 Client-Side Scripting (Semester-V)

54

 Client-Side Scripting (Semester-V)

55

2) The else Statement

Use else statement to specify a block of code to be executed if the condition is false.

Syntax:

Example:

 <html>

 <body>

 <script>

 if (new Date().getHours() < 18)

 {

 document.write("Good day!");

 }

 else

 {

 document.write("Good Evening!");

 }

 </script>

 </body>

 </html>

3) The else if Statement

Use else if statement to specify a new condition if the first condition is false.

if (condition)
{
 // block of code to be executed if the condition is true
} else
{

 // block of code to be executed if the condition is false
}

 Client-Side Scripting (Semester-V)

56

Syntax:

Example:

 <html>

 <body>

 <script>

 var greeting;

 var time = new Date().getHours();

 if (time < 10)

 {

 greeting = "Good morning";

 }

 else if (time < 20)

 {

 greeting = "Good day";

 }

 else

 {

 greeting = "Good evening";

 }

 document.write(greeting);

 </script>

 </body>

 </html>

if (condition1)

{ // block of code to be executed if condition1 is true

}

else if (condition2)

 { // block of code to be executed if the condition1 is false and condition2 is true

}

else

{ // block of code to be executed if the condition1 is false and condition2 is false

}

 Client-Side Scripting (Semester-V)

57

4) The switch case Statement

 The switch statement is used to perform different actions based on different

conditions. It is used to select one of many code blocks to be executed.

Syntax:

 Example:

 <html>

 <body>

 <script>

 var day;

 switch (new Date().getDay())

 {

 case 0:

 day = "Sunday";

 break;

 case 1:

 day = "Monday";

 break;

 case 2:

 day = "Tuesday";

 break;

 case 3:

 day = "Wednesday";

switch(expression)

{

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

This is how it works:

• The switch expression is evaluated once.
• The value of the expression is compared with the values of

each case.
• If there is a match, the associated block of code is executed.
• If there is no match, the default code block is executed.

 Client-Side Scripting (Semester-V)

58

 break;

 day = "Thursday";

 break;

 case 5:

 day = "Friday";

 break;

 case 6:

 day = "Saturday";

 }

 document.write("Today is " + day);

 </script>

 </body>

 </html>

default keyword:

default keyword specifies the code to run if there is no case match.

The getDay() method returns the weekday as a number between 0 and 6.

If today is neither Saturday (6) nor Sunday (0), write a default message.

Example:

switch (new Date().getDay())

{

 case 6:

 text = "Today is Saturday";

 break;

 case 0:

 text = "Today is Sunday";

 break;

 default:

 text = "Looking forward to the Weekend";

}

Example:

 <html>

 Client-Side Scripting (Semester-V)

59

 <body>

 <script>

 // program for a simple calculator

 var result;

 // take the operator input

 var operator = prompt('Enter operator (either +, -, * or /): ');

 // take the operand input

 var number1 = parseFloat(prompt('Enter first number: '));

 var number2 = parseFloat(prompt('Enter second number: '));

 switch(operator)

 {

 case '+':

 result = number1 + number2;

 document.write(`${number1} + ${number2} = ${result}`);

 break;

 case '-':

 result = number1 - number2;

 document.write(`${number1} - ${number2} = ${result}`);

 break;

 case '*':

 result = number1 * number2;

 document.write(`${number1} * ${number2} = ${result}`);

 break;

 case '/':

 result = number1 / number2;

 document.write(`${number1} / ${number2} = ${result}`);

 break;

 Client-Side Scripting (Semester-V)

60

 default:

 document.write('Invalid operator');

 break;

 }

 </script>

 </body>

 </html>

Output:

 Client-Side Scripting (Semester-V)

61

1.7 JavaScript Loop Statement

The JavaScript loops are used to iterate the piece of code using for, while, do while or

for-in loops.

There are four types of loops in JavaScript.

1. for loop

2. while loop

3. do-while loop

4. for-in loop

1) for loop

✓ The JavaScript for loop iterates the elements for the fixed number of times. It

should be used if number of iteration is known.

Syntax:

Example:

 <script>

 for (i=0; i<=10; i=i+2)

 {

 document.write(i + "
")

 }

 </script>

2) do while Loop

loop is a variant of the while loop.

This loop will execute the code block once.

for (initialization; condition; increment)

{

Code to be executed

}

 Client-Side Scripting (Semester-V)

62

before checking if the condition is true, then it will repeat the loop as long as the

condition is true.

Syntax:

Example:

 <script>

 var i=21;

 do{

 document.write(i +"
");

 i++;

 }while (i<=25);

 </script>

3) while loop

The JavaScript while loop loops through a block of code as long as a specified

condition is true.

Syntax:

Example:

 <script>

 var i=11;

 while (i<=20)

 {

 document.write(i + "
");

do

{

 code to be executed

}

while (condition);

while (condition)

{

Code to be executed

}

 Client-Side Scripting (Semester-V)

63

 i++;

 }

 </script>

4) for-in loop

The for/in statement loops through the properties of an object.

The block of code inside the loop will be executed once for each property.

Syntax:

Example:

 <script type = "text/javaScript">

 var lang = { first : "C", second : "Java",third : "Python", fourth : “PHP"};

 for (prog in lang)

 {

 document.write(lang[prog] + "
");

 }

 </script>

Output:

for (variable_name in object)

{

Code to be executed

}

C

Java

Python

PHP

 Client-Side Scripting (Semester-V)

64

 Difference between While Loop and Do – While Loop

While Loop Do – While Loop

In while loop, first it checks the condition

and then executes the program.

In Do – While loop, first it executes the

program and then checks the condition.

It is an entry – controlled loop. It is an exit – controlled loop.

The condition will come before the body. The condition will come after the body.

If the condition is false, then it terminates

the loop.

It runs at least once, even though the

conditional is false.

It is a counter-controlled loop. It is a iterative control loop.

break statement

 break statement breaks the loop and continues executing the code after the loop.

 The break statement can also be used to jump out of a loop.

Example:

 <script type = "text/javaScript">

 var text = "";

 var i;

 for (i = 0; i < 10; i++)

 {

 if (i === 4)

 { break;

 }

 text =text + "The number is " + i + "
";

 }

 document.write(text);

 </script>

Output:

The number is 0

The number is 1

The number is 2

The number is 3

 Client-Side Scripting (Semester-V)

65

continue statement

Continue statement breaks one iteration (in the loop), if a specified condition occurs,

and continues with the next iteration in the loop.

Example:

 <script type = "text/javaScript">

 var text = "";

 var i;

 for (i = 0; i < =6; i++)

 {

 if (i === 4)

 {continue;

 }

 text =text + "The number is " + i + "
";

 }

 document.write(text);

 </script>

Output:

1.8 Querying and Setting Properties

To obtain the value of a property, use . (dot) operator or square[] bracket.

The left-hand side should be an expression whose value is an object.

If using dot (.) operator, the right-hand must be a simple identifier that names the

property.

If using square brackets, the value within the brackets must be an expression that

evaluates to a string that contains the desired property name.

Example,

var name=author.lastname; //get the “lastname ” property of the book

 var title=book[“main title”]; //get the “main title” property of the book

The number is 0

The number is 1

The number is 2

The number is 3

The number is 5

The number is 6

 Client-Side Scripting (Semester-V)

66

To create or set a property, use a dot or square brackets as you would to query the

property, but put them on the left-hand side of an assignment expression:

Example,

 book.price=250; //create or set a property of price

book[“main title”]=“JavaScript” //set the “main title” property

Deleting properties:

 The delete operator deletes a property from an object.

 The delete operator deletes both the value of the property and the property

itself.

 Syntax:

 delete var_name.property;

Example, delete person.name; or

 delete person[“name”];

Code:

 <html>

 <body>

 <script>

 var a={name:"Priti",age:35};

 document.write(a.name+" "+a.age+"
");

 delete a.age; //delete property

 document.write(a.name+" "+a.age);

 </script>

 </body>

 </html>

Output:

Property getter and setter

Also known as Javascript assessors.

Getters and setters allow you to control how important variables are accessed and

updated in your code.

JavaScript can secure better data quality when using getters and setters.

Priti 35

Priti undefined

 Client-Side Scripting (Semester-V)

67

Following example access fullName as a function: person.fullName().

<script>

// Create an object:

var person = { firstName: "Chirag",

 lastName : "Shetty",

 fullName : function()

 {

 return this.firstName + " " + this.lastName;

 }

 };

document.write(person.fullName());

</script>

Following example fullName as a property: person.fullName.

<script>

// Create an object:

var person = { firstName: "Yash ", lastName : "Desai",

 get fullName()

 {

 return this.firstName + " " + this.lastName;

 }

 };

// Display data from the object using a getter

document.write(person.fullName);

</script>

 Client-Side Scripting (Semester-V)

68

Code: Getters and setters allow you to get and set properties via methods.

<script>

var person = {

 firstName: 'Chirag',

 lastName: 'Shetty',

 get fullName()

 {

 return this.firstName + ' ' + this.lastName;

 },

 set fullName (name)

 {

 var words = name.split(' ');

 this.firstName = words[0];

 this.firstName = words[0].toUpperCase();

 this.lastName = words[1];

 }

}

document.write(person.fullName); //Getters and setters allow you to get and set

properties via methods.

document.write("
"+"before using set fullname()"+"
");

person.fullName = 'Yash Desai'; //Set a property using set

document.writeln(person.firstName); // Yash

document.write(person.lastName); // Desai

</script>

Output:

Chirag Shetty

before using set fullname()

YASH Desai

