
 Client Side Scripting Language
(22519)

 Unit 1 :
 Basics of JavaScript Programming

(12 M)

PROGRAM : INFORMATION TECHNOLOGY (NBA ACCREDITED)

: V

NAME OF FACULTY: MS. EMAIL: yogita.khandagale@vpt.edu. in

Basics of JavaScript Programming
1.1 Features of JavaScript

1.2 Object Name, Property, Method, Dot Syntax, Main Event

1.3 Values and Variables

1.4 Operators and Expressions

1.5 if statement , if…else. If…elseif, Nested if

1.6 switch… case statement

1.7 Loop statement

1.8 Querying and setting properties and Deleting properties,

 Property Getters and Setters

Client side Scripting vs.
Server Side Scripting

Server-side scripting involves server for its processing

Client-side scripting requires browsers to run the scripts on
the client machine but does not interact with the server
while processing the client-side scripts

Comparison
Server-side scripting Client-side scripting

Basic Works in the back end which
could not be visible at the
client end.

Works at the front end and
script are visible among the
users.

Processing Requires server interaction Does not need interaction with
the server

Languages
involved

PHP, ASP.net, Ruby, Python HTML, CSS, JavaScript

Affect Could effectively customize the
web pages and provide
dynamic websites.

Can reduce the load to the
server.

Security Relatively secure Insecure

1.1 Features of JavaScript

1.2 Object Name, Property ,
Method, Dot Syntax, Main Event
▪JavaScript is a Object based scripting language.

▪A JavaScript object is a collection of named values.

▪These named values are usually referred to as properties of
the object.

▪A JavaScript objects are collection of properties and
methods.

✓A Methods is a function that is a member of an object.

✓A Property is a value or set of values that is the
member of an object.

Object
In JavaScript, almost "everything" is an object.
✓ Booleans can be objects (if defined with the new keyword)
✓ Numbers can be objects (if defined with the new keyword)
✓ Strings can be objects (if defined with the new keyword)
✓ Dates are always objects
✓ Maths are always objects
✓ Regular expressions are always objects
✓ Arrays are always objects
✓ Functions are always objects
✓ Objects are always objects

Types of Object

• Defined by JavaScript (such as
Math, Date, String, Array)

Built –in
Objects

• Objects which user (we) create)
User-Defined

Objects

• Always available to JavaScript by
browser environment (such as
window, document, form)

Host Objects

Object Name
▪Each object is uniquely identified by a name or ID.

▪With JavaScript, you can define and create your own
objects.

▪There are different ways to create new objects:
1. Define and create a single object, using an object literal.

2. Define and create a single object, with the keyword “new”.
Or By creating instance of Object

3. Define an object constructor, and then create objects of
the constructed type.

Using an Object Literal
▪Easiest way to create a JavaScript Object.

▪Using an object literal, you both define and create an object in
one statement.

▪An object literal is a list of name: value pairs (like age:10) inside
curly braces {}.

▪The following example creates a new JavaScript object with 3
properties:

Example:
var person = {

firstName: “Prasad",
lastName: “Koyande",
age: 10,

};

Person is
a object

Example
<html>

<body>

<script>

emp={id:"VP-179",name:“Prasad",salary:50000}

document.write(emp.id+" "+emp.name+" "+emp.salary);

</script>

</body>

</html>

OUTPUT VP-179 Prasad 50000

Using “new” keyword
▪new keyword is used to create object.

▪Syntax: var objectname=new Object();

▪Example:

var person = new Object();
person.firstName = “Prasad";
person.lastName = “Koyande";
person.age = 10;

Example
<html>

<body>

<script>

var emp=new Object();

emp.id="VP-179";

emp.name=“Prasad Koyande";

emp.salary=50000;

document.write(emp.id+" "+emp.name+" "+emp.salary);

</script>

</body>

</html>

OUTPUT
VP-179 Prasad Koyande

50000

By using Object Constructor
▪Here, you need to create function with arguments.

▪Each argument value can be assigned in the current object by
using this keyword.

▪The this keyword refers to the current object.

▪Example:
function person(firstName, lastName, age)

{

this. firstName = firstName;

this. lastName = lastName;

this. age = age;

}

p=new person(“Prasad”,”Koyande”,10);

document.write(p.firstName+" "+p.lastName+" "+p.age);

Example
<html> <body>

<script>

function emp(id,name,salary)

{

this.id=id;

this.name=name;

this.salary=salary;

}

e=new emp("VP-179",”Prasad Koyande",5000);

document.write(e.id+" "+e.name+" "+e.salary);

</script>

</body> </html>

OUTPUT VP-179 Prasad Koyande 5000

Property
▪Properties are the values associated with a JavaScript object.

▪A JavaScript object is a collection of unordered properties.

▪Properties can usually be changed, added, and deleted, but some are
read only.

▪The syntax for accessing the property of an object is:

objectName.property // person.age

objectName["property"] // person["age"]

objectName[expression] // x = "age"; person[x]

Dot Operator

➢The properties and methods associated with any object can be
accessed by using . Operator.

➢Example, emp.id or op.add();

➢Also used to how to inteact with objects, methods, events and
properties.

➢Dot operator is also used to add new property.

➢Example, emp.designation=“Lecturer”;

Accessing properties with dot operator
<html> <body>
<h2>JavaScript Object Properties</h2>
<script>
var person = {
 firstname:“Prasad",
 lastname:“Koyande“,
 age:10,
 };
document.write(person.firstname+"
");
document.write(person.lastname);
</script>
</body> </html>

JavaScript Object Properties
Prasad
Koyande

OUTPUT

Adding properties with dot operator
<html> <body>

<script>

var person =

{

 firstname:“xyz",

 lastname:“abc",

 age:10

};

person.std = "Fifth";

document.write(person.firstname+" "+"is in "+person.std+" standard");

</script>

</body> </html>

xyz is in Fifth standard OUTPUT

Methods

➢JavaScript methods are actions that can be performed on
objects.

➢A JavaScript function is a block of code designed to perform a
particular task.

➢A JavaScript function is defined with the function keyword,
followed by a name, followed by parentheses ().

➢The parentheses may include parameter names separated by
commas:
(parameter1, parameter2, ...)

Methods

➢The code to be executed, by the function, is placed inside curly
brackets: {}

➢Syntax:

function name(parameter1, parameter2, parameter3)

{
 // code to be executed

}

Methods-Example 1)
<html>

<body>

<script>

function op_add(p1, p2)

{

 return p1 + p2;

}

document.write("Addition is="+op_add(4, 5));

</script>

</body>

</html>
Addition is=9 OUTPUT

Methods- Example 2)
<script>

var person =

{

 firstname:“Prasad",

 lastname:“Koyande",

 Fullname:function()

 {

 return this.firstname+" "+this.lastname;

 }

};

document.write("Person Detail is="+person.Fullname());

</script>

Person Detail is=Prasad
Koyande

OUTPUT

Event
❖An event is an action performed by user or web browser.

❖In order to make a web pages more interactive, the script needs
to be access the contents of the document and know when the
user is interacting with it.

❖Events may occur due to: 1) a document loading

2) user clicking on mouse button

3) browser screen changing size

Here are some examples of HTML events:
•An HTML web page has finished loading
•An HTML input field was changed
•An HTML button was clicked

Event Handling
Event handlers can be used to handle, and verify, user input, user
actions, and browser actions:

✓Things that should be done every time a page loads.

✓Things that should be done when the page is closed.

✓Action that should be performed when a user clicks a button.
Content that should be verified when a user inputs data.

Event Description

onchange An HTML element has been changed

onclick The user clicks an HTML element

onmouseover The user moves the mouse over an HTML element

onmouseout The user moves the mouse away from an HTML element

onkeydown The user pushes a keyboard key

onload The browser has finished loading the page

Example : Input (user clicking on button)
<html>
<head>
<script type="text/javascript">
function msg()
{
 alert("Hello CO5I students");
}
</script>
</head>
<body>
<center>
<p><h1>Welcome to Client-side scripting</h1></p>
<form>
<input type="button" value="click" onclick="msg()"/>
</form>
</body>
</html>

Example : Output

after clicking on click button

after clicking on OK button in alert

Objects

• Native Objects/ Built-in Objects
are those objects supplied by JavaScript.
Examples of these are Math, Date, String, Number, Array,
Image, etc.

• Host Objects
are objects that are supplied to JavaScript by the browser
environment. Examples of these are window, document, forms,
etc.

• User-Defined Objects
are those that are defined by you, the programmer.

Math: Math Properties
Math Property Description

SQRT2 Returns square root of 2.

PI Returns Π value.

E Returns Euler's Constant.

LN2 Returns natural logarithm of 2.

LN10 Returns natural logarithm of 10.

LOG2E Returns base 2 logarithm of E.

LOG10E Returns 10 logarithm of E.

Example : Math
<html>
 <head>
 <title>JavaScript Math Object Properties</title>
 </head>
 <body>
<script type="text/javascript">
var value1 = Math.E;
document.write("E Value is :" + value1 + "
");
var value3 = Math.LN10;
document.write("LN10 Value is :" + value3 + "
");
var value4 = Math.PI;
 document.write("PI Value is :" + value4 + "
");
</script> </body>
</html>

OUTPUT
E Value is :2.718281828459045
LN10 Value is :2.302585092994046
PI Value is :3.141592653589793

Math: Methods

Math Properties

Methods Description

abs() Returns the absolute value of a number.

acos() Returns the arccosine (in radians) of a number.

ceil() Returns the smallest integer greater than or equal to a number.

cos() Returns cosine of a number.

floor() Returns the largest integer less than or equal to a number.

log() Returns the natural logarithm (base E) of a number.

max() Returns the largest of zero or more numbers.

min() Returns the smallest of zero or more numbers.

pow() Returns base to the exponent power, that is base exponent.

Example : Math
<html>
 <head>
 <title>JavaScript Math Object Methods</title>
 </head>
 <body>
 <script type="text/javascript">
 var value = Math.abs(-20);
document.write("ABS Value : " + value +"
");
 var value = Math.tan(5);
 document.write("TAN Value : " + value +"
");
 </script>
</body>
</html>

OUTPUT
ABS Value : 20
TAN Value : -3.380515006246586

Date
•Date is a data type.

•Date object manipulates date and time.

•Date() constructor takes no arguments.

•Date object allows you to get and set the year, month, day, hour, minute,
second and millisecond fields.

•Syntax:
var variable_name = new Date();

Example:
var current_date = new Date();

Date

Methods Description

Date() Returns current date and time.

getDate() Returns the day of the month.

getDay() Returns the day of the week.

getFullYear() Returns the year.

getHours() Returns the hour.

getMinutes() Returns the minutes.

getSeconds() Returns the seconds.

getMilliseconds() Returns the milliseconds.

getTime() Returns the number of milliseconds since January 1, 1970 at 12:00 AM.

Date

Methods Description

getTimezoneOffset() Returns the timezone offset in minutes for the current locale.

getMonth() Returns the month.

setDate() Sets the day of the month.

setFullYear() Sets the full year.

setHours() Sets the hours.

setMinutes() Sets the minutes.

setSeconds() Sets the seconds.

setMilliseconds() Sets the milliseconds.

setTime() Sets the number of milliseconds since January 1, 1970 at 12:00 AM.

Date

Methods Description

setMonth() Sets the month.

toDateString() Returns the date portion of the Date as a human-readable string.

toLocaleString() Returns the Date object as a string.

toGMTString() Returns the Date object as a string in GMT timezone.

valueOf() Returns the primitive value of a Date object.

Example : Date
<html>
 <body>
 <h2>Date Methods</h2>
 <script type="text/javascript">
 var d = new Date();
 document.write("Locale String: " + d.toLocaleString()+"
");
document.write("Hours: " + d.getHours()+"
");
document.write("Day: " + d.getDay()+"
");
document.write("Month: " + d.getMonth()+"
");
document.write("FullYear: " + d.getFullYear()+"
");
document.write("Minutes: " + d.getMinutes()+"
");
</script>
</body>
</html>

OUTPUT

Date Methods
Locale String: 7/3/2020, 5:23:19 PM
Hours: 17
Day: 5
Month: 6
FullYear: 2020
Minutes: 23

String
•String objects are used to work with text.

•It works with a series of characters.

Syntax:
var variable_name = new String(string);

Example:
var s = new String(string);

Properties:

Properties Description

length It returns the length of the string.

constructor It returns the reference to the String function that created the
object.

String: Methods
Methods Description

charAt() It returns the character at the specified index.

charCodeAt() It returns the ASCII code of the character at the specified position.

concat() It combines the text of two strings and returns a new string.

indexOf() It returns the index within the calling String object.

match() It is used to match a regular expression against a string.

replace() It is used to replace the matched substring with a new substring.

search() It executes the search for a match between a regular expression.

slice() It extracts a session of a string and returns a new string.

split() It splits a string object into an array of strings by separating the
string into the substrings.

toLowerCase() It returns the calling string value converted lower case.

toUpperCase() Returns the calling string value converted to uppercase.

Example : String
<html>
 <body>
<script type="text/javascript">
var str = "A JavaScript";
document.write("Char At: " + str.charAt(4)+"
");
document.write("CharCode At: " + str.charCodeAt(0)+"
");
document.write("Index of: " + str.indexOf(“p")+"
");
document.write("Lower Case: " + str.toLowerCase()+"
");
document.write("Upper Case: " + str.toUpperCase()+"
");
 </script>
</body>
</html> OUTPUT

Char At: v
CharCode At: 65
Index of: 10
Lower Case: a javascript
Upper Case: A JAVASCRIPT

Window
✓The window object represents a window in browser.

✓ An object of window is created automatically by the browser.

✓Window is the object of browser, it is not the object of javascript.

Method Description

alert() displays the alert box containing message with ok button.

confirm() displays the confirm dialog box containing message with ok and
cancel button.

prompt() displays a dialog box to get input from the user.

open() opens the new window.

close() closes the current window.

Example : window
<script type="text/javascript">
function msg()
{
var a= window.prompt("Who are you?");
window.alert("I am "+a);
}
</script>
<input type="button" value="click" onclick="msg()">

window: output

DOM getElementById() Method
✓The getElementById() method returns the elements that has given ID

which is passed to the function.

✓ This function is widely used in web designing to change the value of

any particular element or get a particular element.

✓Syntax: document. getElementById(element_id) ;

Parameter: This function accepts single parameter element_id which is
used to hold the ID of element.

Return Value: It returns the object of given ID. If no element exists with
given ID then it returns null.

DOM getElementById() Method
<html>
<body>
<p id="demo">Click the button to change the color of this paragraph.</p>
<button onclick="myFunction()">change color</button>
<script>
function myFunction()
{
 var x = document.getElementById("demo");
 x.style.color = "red";
}
</script>
</body>
</html>

OUTPUT

1.3 Values and Variables
❑A JavaScript variable is simply a name of storage location.

❑Two types of variables in JavaScript :
local variable
global variable.

There are some rules while declaring a JavaScript variable (also
known as identifiers).
❖Name must start with a letter (a to z or A to Z), underscore(_), or

dollar($) sign.

❖After first letter we can use digits (0 to 9), for example value1.

❖JavaScript variables are case sensitive, for example x and X are different
variables.

Local Variables
A JavaScript local variable is declared inside block or function.

It is accessible within the function or block only.

 For example:

<script>
function abc()
{
var x=10;
}
</script>

<script>
If(10<13)
{
var y=20;//JavaScript local variable
}
</script>

Variable is x
(Local)
Value of x is
10

Global Variables
A JavaScript global variable is accessible from any function.

A variable i.e. declared outside the function or declared with window
object is known as global variable.

For example:

<html>
<body>
<script>
var data=200; //gloabal variable
function a()
{
document.write(data);
}

function b()
{
document.write(data);
}
a(); //calling JavaScript function
b();
</script>
</body>
</html>

200 200

Global Variables
A JavaScript global variable is declared outside the function or
declared with window object.

It can be accessed from any function.

For example:

<html>
<body>
<script>
var value=50; //global variable
function a()
{
alert(value);
}

a();
</script>
</body>
</html>

Data Types
✓JavaScript provides different data types to hold different types of
values.

✓There are two types of data types in JavaScript:
1.Primitive data type
2.Non-primitive (reference) data type/ Composit Data Types

✓JavaScript is a dynamic type language, means you don't need to
specify type of the variable.

✓ You need to use var here to specify the data type.

✓It can hold any type of values such as numbers, strings etc.

✓For example: var a=40;//holding number

 var b=“Info Technology”//holding string

Data Types

JavaScript Data
Types

Primitive (Primary)

String Number Boolean Undefined Null

Non-Primitive (Composite)

Object Array Function

Data Types: Primitive
Primitive data types can hold only one value at a time.

1) The String Data Type

The string data type is used to represent textual data (i.e.
sequences of characters).

Strings are created using single or double quotes surrounding one
or more characters, as shown below:

var a = ‘Welcome'; // using single quotes

var b = “Welcome”;// using double quotes

Data Types: Primitive
2) The Number Data Type

✓The number data type is used to represent positive or negative

numbers with or without decimal place.

✓The Number data type also includes some special values which

 are: Infinity,-Infinity, NaN

✓Example,

var a = 25; // integer

var b = 80.5; // floating-point number

var c = 4.25e+6; // exponential notation, same as 4.25e6 or 4250000

var d = 4.25e-6; // exponential notation, same as 0.00000425

Data Types: Primitive
3) The Boolean Data Type

✓The Boolean data type can hold only two values: True/False

✓Example,

var a = 2, b = 5, c = 10;

alert(b > a) // Output: true

alert(b > c) // Output: false

Data Types: Primitive
4) The Undefined Data Type

✓The undefined data type can only have one value-the special value
“undefined”.

✓If a variable has been declared, but has not been assigned a value, has
the value ”undefined”.

✓ Example,

var a;

var b = “Welcome”;

alert(a) // Output: undefined

alert(b) // Output: Welcome

Data Types: Primitive
5) The Null Data Type

✓A Null value means that there is no value.

✓It is not equivalent to an empty string (“ “) or zero or it is simply
nothing.

✓Example,

var a = null;

alert(a); // Output: null

var b = "Hello World!“

alert(b); // Output: Hello World!

b = null;

alert(b) // Output: null

Data Types: Non-primitive
1) The Object Data Type

✓a complex data type that allows you to store collections of data.

✓An object contains properties, defined as a key-value pair.

✓ A property key (name) is always a string, but the value can be any
data type, like strings, numbers, Boolean, or complex data types like
arrays, function and other objects.

✓Example,

var car =

{ "modal": “SUZUKI", "color": “WHITE", “model": 2019 }

Data Types: Non-primitive
2) The Array Data Type

✓An array is a type of object used for storing multiple values in single
variable.

✓Each value (also called an element) in an array has a numeric position,
known as its index, and it may contain data of any data type-numbers,
strings, Booleans, functions, objects, and even other arrays.

✓The array index starts from 0, so that the first array element is arr [0].

✓The simplest way to create an array is by specifying the array elements as a
comma-separated list enclosed by square brackets, as shown in the
example below:

✓var cities = ["London", "Paris", "New York"];

✓alert(cities[2]); // Output: New York

Data Types: Non-primitive
3) The Function Data Type

✓The function is callable object that executes a block of code.

✓ Since functions are objects, so it is possible to assign them to variables, as
shown in the example below:

var ab = function()

{

return “Welcome”;

}

alert(typeof ab);//output: function

alert(ab());//output:Welcome

Example : Non- Primitive
<html>
<body>
<h1>JavaScript Array</h1>
<script>
var stringArray = ["one", "two", "three"];
var mixedArray = [1, "two", "three", 4];
document.write(stringArray+"
");
document.write(mixedArray);
</script>
</body>
</html> OUTPUT

JavaScript Array
one,two,three
1,two,three,4

Values/Literals
✓They are types that can be assigned a single literal value such as the
number 5.7, or a string of characters such as "hello".

✓Types of Literals:

➢Array Literal

➢Integer Literal

➢Floating number Literal

➢Boolean Literal (include True and False)

➢Object Literal

➢String Literal

Array Literal
✓ an array literal is a list of expressions, each of which represents an array
element, enclosed in a pair of square brackets ' [] ‘ .

✓When an array is created using an array literal, it is initialized with the
specified values as its elements, and its length is set to the number of
arguments specified.

✓Creating an empty array :

var tv = [];

Creating an array with four elements.

var tv = [“LG", “Samsung", “Sony", “Panasonic"]

Array Literal
✓Comma in array literals:

➢In the following example, the length of the array is four, and tv[0] and
tv[2] are undefined.

var tv = [, “Samsung“ , , “Panasonic"]

➢This array has one empty element in the middle and two elements with
values. (tv[0] is “LG", tv[1] is set to undefined, and tv[2] is “Sony")

Var tv = [“LG", ,“Sony",]

Integer Literal
An integer must have at least one digit (0-9).

• No comma or blanks are allowed within an integer.

• It does not contain any fractional part.

• It can be either positive or negative if no sign precedes it is assumed to be
positive.

In JavaScript, integers can be expressed in three different bases.

1. Decimal (base 10)

Example: 123, -20, 12345

2. Hexadecimal (base 16)

Example: 7b, -14, 3039

3. Octal (base 8)

Example: 173, -24, 30071

Decimal numbers can be made with the digits 0, 1, 2, 3, 4, 5,
6, 7, 8, 9 and there will be no leading zeros.

Hexadecimal numbers can be made with the digits 0, 1, 2, 3, 4,
5, 6, 7, 8, 9 and letters A, B, C, D, E, F or a, b, c, d, e, f.
A leading 0x or 0X indicates the number is hexadecimal.

Octal numbers can be made with the digits 0, 1, 2, 3, 4, 5, 6, 7.
A leading 0 indicates the number is octal.

Floating Number Literal
A floating number has the following parts.

• A decimal integer.
• A decimal point ('.').
• A fraction.
• An exponent.

The exponent part is an "e" or "E" followed by an integer, which can be signed
(preceded by "+" or "-").

Example of some floating numbers :

•8.2935

•-14.72

•12.4e3 [Equivalent to 12.4 x 103]

•4E-3 [Equivalent to 4 x 10-3 => .004]

Object Literal
An object literal is zero or more pairs of comma-separated list of property names
and associated values, enclosed by a pair of curly braces.

In JavaScript an object literal is declared as follows:

1. An object literal without properties:

var userObject = {}

2. An object literal with a few properties :

var student = {
First-name : "Suresy",
Last-name : "Rayy",
Roll-No : 12
};

Syntax Rules
•There is a colon (:) between property name and value.
•A comma separates each property name/value from
the next.
•There will be no comma after the last property
name/value pair.

String Literal
➢JavaScript has its own way to deal with string literals.

➢A string literal is zero or more characters, either enclosed in single
quotation (') marks or double quotation (") marks. You can also use +
operator to join strings.

➢The following are the examples of string literals :

string1 = "w3resource.com"
string1 = 'w3resource.com’

string1 = "1000“

➢In addition to ordinary characters, you can include special characters in
strings, as shown in the following.

string1 = "First line. \n Second line."

Comments
✓The JavaScript comments are meaningful way to deliver message.

✓ It is used to add information about the code, warnings or suggestions so
that end user can easily interpret the code.

✓The JavaScript comment is ignored by the JavaScript engine i.e.
embedded in the browser.

Types of JavaScript Comments
There are two types of comments in JavaScript.

1. Single-line Comment

It is represented by double forward slashes (//).
It can be used before and after the statement.

<script>
// It is single line comment
document.write("hello javascript");
</script>

Types of JavaScript Comments
There are two types of comments in JavaScript.

2. Multi-line Comment

It can be used to add single as well as multi line comments.
It is represented by forward slash with asterisk then asterisk with
forward slash.

<script>
/* It is multi line comment.
It will not be displayed */
document.write("example of javascript multiline comment");
</script>

1.4 Operators and Expression
JavaScript operators are symbols that are used to perform operations
on operands.

1.Arithmetic Operators

2.Comparison (Relational) Operators

3.Bitwise Operators

4.Logical Operators

5.Assignment Operators

6.Special Operators

Arithmetic Operator
✓used to perform arithmetic operations on the operands.

Operator Description Example

+ Addition 10+20 = 30

- Subtraction 20-10 = 10

* Multiplication 10*20 = 200

/ Division 20/10 = 2

% Modulus 20%10 = 0

++ Increment var a=10; a++; Now a = 11

-- Decrement var a=10; a--; Now a = 9

Comparison Operator

Operator Description Example

== Is equal to 10==20 = false

=== Identical (equal and of same type) 10==20 = false

!= Not equal to 10!=20 = true

!== Not Identical 20!==20 = false

> Greater than 20>10 = true

>= Greater than or equal to 20>=10 = true

< Less than 20<10 = false

<= Less than or equal to 20<=10 = false

➢compares the two operands

Bitwise Operator
✓The bitwise operators perform bitwise operations on operands.

Operator Description Example

& Bitwise AND 5 & 1 = 1
0101 & 0001 = 0001

| Bitwise OR 5 | 1 = 5
0101 | 0001 = 0101

^ Bitwise XOR 5 ^ 1 = 4
0101 ^ 0001 = 0100

~ Bitwise NOT ~ 5 = 10 ➔ ~0101 = 1010

<< Bitwise Left Shift 5 << 1 = 10 ➔ 0101 << 1 = 1010

>> Bitwise Right Shift 5 >> 1 = 2 ➔ 0101 >> 1 = 0010

>>> Bitwise Right Shift with Zero 5 >>> 1 = 2 ➔ 0101 >>> 1 = 0010

Logical Operator

Operator Description Example

&& Logical AND (10==20 && 20==33) = false

|| Logical OR (10==20 || 20==33) = false

! Logical Not !(10==20) = true

Assignment Operator

Operator Description Example

= Assign 10+10 = 20

+= Add and assign var a=10; a+=20; Now a = 30

-= Subtract and assign var a=20; a-=10; Now a = 10

= Multiply and assign var a=10; a=20; Now a = 200

/= Divide and assign var a=10; a/=2; Now a = 5

%= Modulus and assign var a=10; a%=2; Now a = 0

Special Operator
Operator Description

(?:) Conditional Operator returns value based on the condition.
It is like if-else.

, Comma Operator allows multiple expressions to be evaluated as single
statement

delete Delete Operator deletes a property from the object

in In Operator checks if object has the given property

instanceof checks if the object is an instance of given type

new creates an instance (object)

typeof checks the type of object

void it discards the expression's return value

Expression
✓Any unit of code that can be evaluated to a value is an expression.

✓Since expressions produce values, they can appear anywhere in a
program where JavaScript expects a value such as the arguments of a
function invocation.

✓Types of Expression:

1. Primary Expression

2. Object and Array Initializers

3. Property Access Expressions

4. Function Definition Expression

5. Invocation Expression

Primary Expression
✓Primary expressions refer to stand alone expressions such as

literal values, certain keywords and variable values.

'hello world'; // A string literal

23; // A numeric literal

true; // Boolean value true

sum; // Value of variable sum

this; // A keyword that evaluates to the current object.

Object and Array Initializers
✓Object and array initializers are expressions whose value is a newly created
object or array.

✓Object initializer expressions uses curly brackets, and each subexpression is
prefixed with a property name and a colon.

✓Example, var emp={ name:”Yogita”, branch:“IF”};

 OR

 var person={ };

 person.name=“Yogita”;

 person.branch=“IF”;

✓An array initializer is a comma-separated list of expressions surrounded with
a square brackets.

✓Example, var tv=[“LG”, ”Samsung”];

Property Access Expressions
✓A property access expression evaluates to the value of an object
property or an array element.

✓JavaScript defines two syntaxes for property access:

✓Exmaple,

expression.identifier;
expression[identifier];

emp.firstName;
emp[lastName];

Function Definition Expression
✓A function expression is part of a variable assignment expression
and may or may not contain a name.

✓Since this type of function appears after the assignment operator
=, it is evaluated as an expression.

✓Function expressions are typically used to assign a function to a
variable.

✓Function expressions are evaluated only when the interpreter
reaches the line of code where function expressions are located.

var sq=function (x)
{ return x*x;
}

Invocation Expressions
✓An invocation expression is JavaScript’s syntax for calling (or
executing) a function or method.

✓It starts with a function expression that identifies the function to be
called.

✓ The function expression is followed by an open parenthesis, a
comma-separated list of zero or more argument expressions, and a
close parenthesis.

✓When an invocation expression is evaluated, the function expression
is evaluated first, and then the argument expressions are evaluated to
produce a list of argument values.

Invocation Expressions

f(0) // f is the function expression; 0 is the argument expression.

Math.max(x,y,z) // Math.max is the function; x, y and z are the
arguments.

a.sort() // a.sort is the function; there are no arguments.

1.5 if statement(Conditional)
✓Conditional statements are used to perform different actions based on
different conditions.

✓In JavaScript we have the following conditional statements:

The if Statement

✓Use if statement to specify a block of JavaScript code to be executed if a
condition is true.

✓Syntax:

✓Example:

if (condition)
{
 //block of code to be executed if the condition is
true
}

<html>
<body>
<script>
if (new Date().getHours() < 18)
{
 document.write("Good day!");
}
</script>
</body>
</html>

The else Statement

✓Use else statement to specify a block of code to be executed if the
condition is false.

✓Syntax:

if (condition)
{
// block of code to be executed if the condition

is true
} else

{
// block of code to be executed if the condition

is false
}

The else Statement-Example
<html> <body>

<script>

if (new Date().getHours() < 18)

{

 document.write("Good day!");

}

else

{

document.write("Good Evening!");

}

</script>

</body> </html>

The else if Statement
✓Use else if statement to specify a new condition if the first condition is

false.

✓ Syntax:
if (condition1)
{ // block of code to be executed if condition1 is true
}
else if (condition2)
 { // block of code to be executed if the condition1 is false
and condition2 is true
}
else
{ // block of code to be executed if the condition1 is false
and condition2 is false
}

The else if Statement-Example
<html>

<body>

<script>

 var greeting;

 var time = new Date().getHours();

 if (time < 10)

 {

 greeting = "Good morning";

 }

 else if (time < 20)

 {

 greeting = "Good day";

 }

 else

 {

 greeting = "Good evening";

 }

 document.write(greeting);

</script>

</body>

</html>

The switch case Statement
✓The switch statement is used to perform different actions based on
different conditions.

✓It is used to select one of many code blocks to be executed.

✓Syntax:

switch(expression)
{
case x:
// code block
break;

case y:
// code block
break;

default:
 // code block

}

This is how it works:
•The switch expression is evaluated once.
•The value of the expression is compared with the values
of each case.
•If there is a match, the associated block of code is
executed.
•If there is no match, the default code block is executed.

1.6 The switch case-Example
<html>
<body>
<script>
var day;
switch (new Date().getDay())
{
 case 0:
 day = "Sunday";
 break;
 case 1:
 day = "Monday";
 break;
 case 2:
 day = "Tuesday";
break;

case 3:
 day = "Wednesday";
 break;
Case 4:
 day = "Thursday";
 break;
 case 5:
 day = "Friday";
 break;
 case 6:
 day = "Saturday";
}
document.write("Today is " + day);
</script>
</body>

</html>

default keyword
✓default keyword specifies the code to run if there is no case match.

✓The getDay() method returns the weekday as a number between 0
and 6.

If today is neither Saturday (6) nor Sunday (0), write a default
message.

switch (new Date().getDay())

{
case 6:

 text = "Today is Saturday";
break;

case 0:
 text = "Today is Sunday";
break;

default:
 text = "Looking forward to the Weekend";

}

1.7 JavaScript Loop Statement
The JavaScript loops are used to iterate the piece of code using for,
while, do while or for-in loops.

There are four types of loops in JavaScript.

✓for loop

✓while loop

✓do-while loop

✓for-in loop

for Loop
✓The JavaScript for loop iterates the elements for the fixed number
of times. It should be used if number of iteration is known.

✓Syntax:

✓Example:

for (initialization; condition; increment)
{
Code to be executed
}

<script>
for (i=0; i<=10; i=i+2)
{
document.write(i + "
")
}
</script>

do while Loop
✓loop is a variant of the while loop.

✓This loop will execute the code block once.

✓before checking if the condition is true, then it will repeat the loop as
long as the condition is true.

✓Syntax:

✓Example:

do
{

code to be executed
}
while (condition);

<script>
var i=21;
do{
document.write(i +"
");
i++;
}while (i<=25);
</script>

while Loop
✓The JavaScript while loop loops through a block of code as long as a
specified condition is true.

✓Syntax:

✓Example:

while (condition)
{
Code to be executed
}

var i=11;
while (i<=20)
{
document.write(i + "
");
i++;
}

For-in Loop
✓The for..in statement loops through the properties of an object.

✓The block of code inside the loop will be executed once for each
property.

✓Syntax:

✓Example:

for (variable_name in object)
{
Code to be executed
}

<script type = "text/javaScript">
var lang = { first : "C", second : "Java",third : "Python", fourth :
“PHP"};
 for (prog in lang)
 {
 document.write(lang[prog] + "
");
 }
 </script>

C

Java

Python

PHP

break statement
✓break statement breaks the loop and continues executing the code after
the loop.

✓The break statement can also be used to jump out of a loop.

✓Example: var text = "";
var i;
for (i = 0; i < 10; i++)
{
 if (i === 4)
 { break;
 }
 text =text + "The number is " + i + "
";
}
document.write(text);
</script>

The number is 0

The number is 1

The number is 2

The number is 3

continue statement
✓Continue statement breaks one iteration (in the loop), if a specified
condition occurs, and continues with the next iteration in the loop.

✓Example:

var text = "";
var i;
for (i = 0; i < =6; i++)
{
 if (i === 4)
 {continue;
 }
 text =text + "The number is " + i + "
";
}
document.write(text);
</script>

The number is 0

The number is 1

The number is 2

The number is 3

The number is 5

The number is 6

1.8 Querying and Setting Properties
✓To obtain the value of a property, use . (dot) operator or square[]
bracket.

✓The left hand side should be an expression whose value is an
object.

✓If using dot (.) operator, the right-hand must be a simple
identifier that names the property.

✓If using square brackets, the value within the brackets must be an
expression that evaluates to a string that contains the desired
property name.

1.8 Querying and Setting Properties
✓Example,

var name=author.lastname;

var title=book[“main title”];

✓To create or set a property, use a dot or square brackets as you
would to query the property, but put them on the left-hand side
of an assignment expression:

✓Example, book.price=250;

book[“main title”]=“JavaScript”

//get the “lastname ” property of the book.

//get the “main title” property of the book.

//create or set a property of price.

//set the “main title” property.

Deleting properties

The delete operator deletes a property from an object.

The delete operator deletes both the value of the property and
the property itself.

Syntax:

delete var_name.property;

Example, delete person.name; or

 delete person[“name”];

Deleting properties
<html>
<body>
<script>
var a={name:"Priti",age:35};
document.write(a.name+" "+a.age+"
");
delete a.age; //delete property
document.write(a.name+" "+a.age);
</script>
</body>
</html

Priti 35
Priti undefined

Property getter and setter

✓Also known as Javascript assessors.

✓Getters and setters allow you to control how important variables
are accessed and updated in your code.

✓JavaScript can secure better data quality when using getters and
setters.

JavaScript Function or Getter?

<script>

// Create an object:

var person = { firstName: "Chirag", lastName : "Shetty",

 fullName : function()

 {

 return this.firstName + " " + this.lastName;

 }

 };

document.write(person.fullName());

</script>

This example access fullName as a
function: person.fullName().

JavaScript Function or Getter?

<script>

// Create an object:

var person = { firstName: "Yash ", lastName : "Desai",

 get fullName()

 {

 return this.firstName + " " + this.lastName;

 }

 };

// Display data from the object using a getter

document.write(person.fullName);

</script>

This example fullName as a
property: person.fullName.

	Slide 1: Client Side Scripting Language (22519)
	Slide 2: Unit 1 : Basics of JavaScript Programming (12 M)
	Slide 3: Basics of JavaScript Programming
	Slide 4: Client side Scripting vs. Server Side Scripting
	Slide 5: Comparison
	Slide 6: 1.1 Features of JavaScript
	Slide 7: 1.2 Object Name, Property , Method, Dot Syntax, Main Event
	Slide 8: Object
	Slide 9: Types of Object
	Slide 10: Object Name
	Slide 11: Using an Object Literal
	Slide 12: Example
	Slide 13: Using “new” keyword
	Slide 14: Example
	Slide 15: By using Object Constructor
	Slide 16: Example
	Slide 17: Property
	Slide 18: Dot Operator
	Slide 19: Accessing properties with dot operator
	Slide 20: Adding properties with dot operator
	Slide 21: Methods
	Slide 22: Methods
	Slide 23: Methods-Example 1)
	Slide 24: Methods- Example 2)
	Slide 25: Event
	Slide 26: Event Handling
	Slide 27: Example : Input (user clicking on button)
	Slide 28: Example : Output
	Slide 29: Objects
	Slide 30: Math: Math Properties
	Slide 31: Example : Math
	Slide 32: Math: Methods
	Slide 33: Example : Math
	Slide 34: Date
	Slide 35: Date
	Slide 36: Date
	Slide 37: Date
	Slide 38: Example : Date
	Slide 39: String
	Slide 40: String: Methods
	Slide 41: Example : String
	Slide 42: Window
	Slide 43: Example : window
	Slide 44: window: output
	Slide 45: DOM getElementById() Method
	Slide 46: DOM getElementById() Method
	Slide 47: 1.3 Values and Variables
	Slide 48: Local Variables
	Slide 49: Global Variables
	Slide 50: Global Variables
	Slide 51: Data Types
	Slide 52: Data Types
	Slide 53: Data Types: Primitive
	Slide 54: Data Types: Primitive
	Slide 55: Data Types: Primitive
	Slide 56: Data Types: Primitive
	Slide 57: Data Types: Primitive
	Slide 58: Data Types: Non-primitive
	Slide 59: Data Types: Non-primitive
	Slide 60: Data Types: Non-primitive
	Slide 61: Example : Non- Primitive
	Slide 62: Values/Literals
	Slide 63: Array Literal
	Slide 64: Array Literal
	Slide 65: Integer Literal
	Slide 66: Floating Number Literal
	Slide 67: Object Literal
	Slide 68: String Literal
	Slide 69: Comments
	Slide 70: Types of JavaScript Comments
	Slide 71: Types of JavaScript Comments
	Slide 72: 1.4 Operators and Expression
	Slide 73: Arithmetic Operator
	Slide 74: Comparison Operator
	Slide 75: Bitwise Operator
	Slide 76: Logical Operator
	Slide 77: Assignment Operator
	Slide 78: Special Operator
	Slide 79: Expression
	Slide 80: Primary Expression
	Slide 81: Object and Array Initializers
	Slide 82: Property Access Expressions
	Slide 83: Function Definition Expression
	Slide 84: Invocation Expressions
	Slide 85: Invocation Expressions
	Slide 86: 1.5 if statement(Conditional)
	Slide 87: The if Statement
	Slide 88: The else Statement
	Slide 89: The else Statement-Example
	Slide 90: The else if Statement
	Slide 91: The else if Statement-Example
	Slide 92: The switch case Statement
	Slide 93: 1.6 The switch case-Example
	Slide 94: default keyword
	Slide 95: 1.7 JavaScript Loop Statement
	Slide 96: for Loop
	Slide 97: do while Loop
	Slide 98: while Loop
	Slide 99: For-in Loop
	Slide 100: break statement
	Slide 101: continue statement
	Slide 102: 1.8 Querying and Setting Properties
	Slide 103: 1.8 Querying and Setting Properties
	Slide 104: Deleting properties
	Slide 105: Deleting properties
	Slide 106: Property getter and setter
	Slide 107: JavaScript Function or Getter?
	Slide 108: JavaScript Function or Getter?
	Slide 109

