INTRODUCTION
JAVA FEATURES
1. Important to the Internet: - Java expands the universe of objects that can move about freely in cyberspace. In a network, two very broad categories of objects are transmitted between the server and your personal computer: passive information and dynamic, active programs. For example, when you read your e-mail, you are viewing passive data. A second type of object can be transmitted to your computer: a dynamic, self-executing program. Such a program is an active agent on the client computer, yet is initiated by the server. For example, a program might be provided by the server to display properly the data that the server is sending.

2. Java Applets and Applications: - Java can be used to create two types of programs: applications and applets. An application is a program that runs on your computer, under the operating system of that computer. That is, an application created by Java is more or less like one created using C or C++. Java’s ability to create applets that makes it important. An applet is an application designed to be transmitted over the Internet and executed by a Java-compatible Web browser. An applet is actually a tiny Java program, dynamically downloaded across the network, just like an image, sound file, or video clip. The important difference is that an applet is an intelligent program, not just an animation or media file. In other words, an applet is a program that can react to user input and dynamically change—not just run the same animation or sound over and over.
3. Security: - Every time that you download a “normal” program, you are risking a viral infection.. In addition to viruses, another type of malicious program exists that must be guarded against. This type of program can gather private information, such as credit card numbers, bank account balances, and passwords, by searching the contents of your computer’s local file system. Java answers both of these concerns by providing a “firewall” between a networked application and your computer. When you use a Java-compatible Web browser, you can safely download Java applets without fear of viral infection or malicious intent. Java achieves this protection by confining a Java program to the Java execution environment and not allowing it access to other parts of the computer.

4. Portability: - As discussed earlier, many types of computers and operating systems are in use throughout the world—and many are connected to the Internet. For programs to be dynamically downloaded to all the various types of platforms connected to the Internet, some means of generating portable executable code is needed. Java’s solution to the problem is both elegant and efficient.
5. Simple: - Java inherits the C/C++ syntax and many of the object-oriented features of C++, most programmers have little trouble learning Java. Also, some of the more confusing concepts from C++ are either left out of Java or implemented in a cleaner, more approachable manner. Beyond its similarities with C/C++, Java has another attribute that makes it easy to learn.
6. Object-Oriented:- Although influenced by its predecessors, Java was not designed to be source-code compatible with any other language. This allowed the Java team the freedom to design with a blank slate. One outcome of this was a clean, usable, pragmatic approach to objects.
7. Robust:- The ability to create robust programs was given a high priority in the design of Java. To gain reliability, Java restricts you in a few key areas, to force you to find your mistakes early in program development. At the same time, Java frees you from having to worry about many of the most common causes of programming errors. Because Java is a strictly typed language, it checks your code at compile time. However, it also checks your code at run time. In fact, many hard-to-track-down bugs that often turn up in

hard-to-reproduce run-time situations are simply impossible to create in Java. Knowing that what you have written will behave in a predictable way under diverse conditions is a key feature of Java.
8. Memory Management and Exception handling :- Java virtually eliminates these problems by managing memory allocation and deallocation for you. (In fact, deallocation is completely automatic, because Java provides garbage collection for unused objects.) Exceptional conditions in traditional environments often arise in situations such as division by zero or “file not found,” and they must be managed with clumsy and hard-to-read constructs. Java helps in this area by providing object-oriented exception handling. In a well-writtenJava program, all run-time errors can—and should—be managed by your program.
9. Multithreaded:- Java was designed to meet the real-world requirement of creating interactive, networked programs. To accomplish this, Java supports multithreaded programming, which allows you to write programs that do many things simultaneously. The Java run-time system comes with an elegant yet sophisticated solution for multiprocess synchronization that enables you to construct smoothly running interactive systems.
10. Architecture Neutral: - One of the main problems facing programmers is that no guarantee exists that if you write a program today, it will run tomorrow—even on the same machine. Operating system upgrades, processor upgrades, and changes in core system resources can all combine to make a program malfunction. The Java designers made several hard decisions in the Java language and the Java Virtual Machine in an attempt to alter this situation. Their goal was “write once; run anywhere, any time, forever.”
11. Interpreted and High Performance: - As described earlier, Java enables the creation of cross-platform programs by compiling into an intermediate representation called Java bytecode. This code can be interpreted on any system that provides a Java Virtual Machine. Most previous attempts at crossplatform solutions have done so at the expense of performance. Java bytecode was carefully designed so that it would be easy to translate directly into native machine code for very high performance by using a just-in -time compiler. Java run-time systems that provide this feature lose none of the benefits of the platform-independent code.
12. Distributed: - This allowed objects on two different computers to execute procedures remotely. Java revived these interfaces in a package called Remote Method Invocation (RMI). This feature brings an unparalleled level of abstraction to client/server programming.
13. Dynamic: - Java programs carry with them substantial amounts of run-time type information that is used to verify and resolve accesses to objects at run time. This makes it possible to dynamically link code in a safe and expedient manner. This is crucial to the robustness of the applet environment, in which small fragments of bytecode may be dynamically updated on a running system.

Table Comparing C, C++ and Java

	Feature
	C
	C++
	Java

	Paradigms
	Procedural
	Procedural, OOP, Generic Programming
	OOP, Generic Programming (from Java 5)

	Form of Compiled Source Code
	Executable Native Code
	Executable Native Code
	Java bytecode

	Memory management
	Manual
	Manual
	Managed, using a garbage collector

	Pointers
	Yes, very commonly used.
	Yes, very commonly used, but some form of references available too.
	No pointers; references are used instead.

	Preprocessor
	Yes
	Yes
	No

	String Type
	Character arrays
	Character arrays, objects
	Objects

	Complex Data Types
	Structures, unions
	Structures, unions, classes
	Classes

	Inheritance
	N/A
	Multiple class inheritance
	Single class inheritance, multiple interface implementation

	Operator Overloading
	N/A
	Yes
	No

	Automatic coercions
	Yes, with warnings if loss could occur
	Yes, with warnings if loss could occur
	Not at all if loss could occur; msut cast explicitly

	Variadic Parameters
	Yes
	Yes
	No

	Goto Statement
	Yes
	Yes
	No

The Bytecode / JVM / JRE
The key that allows Java to solve both the security and the portability problems just described is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a highly optimized set of instructions designed to be executed by the Java run-time system, which is called the Java Virtual Machine (JVM). That is,in its standard form, the JVM is an interpreter for bytecode. This may come as a bit of a surprise. As you know, C++ is compiled to executable code. In fact, most modern languages are designed to be compiled, not interpreted—mostly because of performance concerns. However, the fact that a Java program is executed by the JVM helps solve the major problems associated with downloading programs over the Internet. Here is why. Translating a Java program into bytecode helps makes it much easier to run a program in a wide variety of environments. The reason is straightforward: only the JVM needs to be implemented for each platform. Once the run-time package exists for a given system, any Java program can run on it. Remember, although the details of the JVM will differ from platform to platform, all interpret the same Java bytecode. If a Java program were compiled to native code, then different versions of the same program would have to exist for each type of CPU connected to the Internet. This is, of course, not a feasible solution. Thus, the interpretation of bytecode is the easiest way to create truly portable programs.

The fact that a Java program is interpreted also helps to make it secure. Because the execution of every Java program is under the control of the JVM, the JVM can contain the program and prevent it from generating side effects outside of the system. As you will see, safety is also enhanced by certain restrictions that exist in the Java language. When a program is interpreted, it generally runs substantially slower than it would run if compiled to executable code. However, with Java, the differential between the two is not so great. The use of bytecode enables the Java run-time system to execute programs much faster than you might expect.
[image: image1.emf]
JIT (Just In Time Compiler)

Sun supplies its Just In Time (JIT) compiler for bytecode, which is included in the Java 2 release. When the JIT compiler is part of the JVM, it compiles bytecode into executable code in real time, on a piece-by-piece, demand basis. It is important to understand that it is not possible to compile an entire Java program into executable code all at once, because Java performs various run-time checks that can be done only at run time. Instead, the JIT compiles code as it is needed, during execution. However, the just-in-time approach still yields a significant performance boost. Even when dynamic compilation is applied to bytecode, the portability and safety features still apply, because the run-time system (which performs the compilation) still is in charge of the execution environment. Whether your Java program is actually interpreted in the traditional way or compiled on-the-fly, its functionality is the same.
[image: image2.emf]
