INTRODUCTION TO JAVA
1. State any four features of JAVA? (Dec 08,10 May 10,11) (4m)
Ans:- Following are JAVA features :-

a. Compiled and Interpreted:
Usually a computer language is either compiled or interpreted. Java combines both these approaches thus making Java a two-stage system: First, Java compiler translates source code into what is known as bytecode instructions. Bytecodes are not machine instructions and therefore, in the second stage, Java interpreter generates machine code that can be directly executed by the machine that is running the Java program. We can thus say that Java is both a compiled and an interpreted language

b. Platform-Independent and Portable :

The most significant contribution of Java over other languages is its portability. Java programs can be easily moved from one computer system to another, anywhere and anytime. Changes and upgrades in operating systems, processors and system resources will not force any changes in Java programs. This is the reason I why Java has become a popular language for programming on Internet which interconnects different kinds of systems worldwide. We can download a Java applet from a remote computer onto our local system via I Internet and execute it locally. This makes the Internet an extension of the user's basic system providing practically unlimited number of accessible applets and applications.

Java ensures portability in two ways. First, Java compiler generates bytecode instructions that can be implemented on any machine. Secondly, the sizes of the primitive data types are machine-independent.

c. Object Oriented :

Java is a true object-oriented language. Almost everything in Java is an object. All program code and data reside within objects and classes. Java comes with an extensive set of classes, arranged in packages that we can use in our programs by inheritance. The object model in Java is simple and easy to extend.
d. Robust and Secure :

Java is a robust language. It provides many safeguards to ensure reliable code. It has strict compile time and run time checking for data types. It is designed as a garbage-collected language relieving the programmers virtually all memory management problems. Java also incorporates the concept of exception handling which captures series errors and eliminates any risk of crashing the system.

Security becomes an important issue for a language that is used for programming on Internet. Threat of viruses and abuse of resources are everywhere. Java systems not only verify all memory access but also ensure that no viruses are communicated with an applet. The absence of pointers in Java ensures that programs cannot gain access to memory locations without proper authorization
e. Distributed :

 Java is designed as a distributed language for creating applications on networks. It has the ability to share both data and programs. Java applications can open and access remote objects on Internet as easily as they can do in a local system. This enables multiple programmers at multiple remote locations to collaborate and work together on a single project
f. Simple, Small and Familiar :

Java is a small and simple language. Many features of C and C++ that are either redundant or sources of unreliable code are not part of Java. For example, Java does not use pointers, preprocessor header files, goto statement and many others. It also eliminates operator overloading and multiple inheritance. Familiarity is another striking feature of Java. To make the language look familiar to the existing programmers, it was modelled on C and C++ languages. Java uses many constructs of C and C++ and therefore, Java code "looks like a C++" code. In fact, Java is a simplified version of C++.
2. Describe arithmetic operators with examples? (Dec 08) (4m)
Ans:- Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. The following table lists the arithmetic operators:

[image: image1.emf]
Basic Arithmetic Operators:- The basic arithmetic operations—addition, subtraction, multiplication, and division—all behave as you would expect for all numeric types. The minus operator also has a unary form which negates its single operand.
The Modulus Operator
The modulus operator, %, returns the remainder of a division operation. It can be applied to floating-point types as well as integer types.
Arithmetic Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with an assignment. As you probably know, statements like the following are quite common in programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;
There are assignment operators for all of the arithmetic, binary operators. Thus, any statement of the form

var = var op expression; can be rewritten as

var op= expression;

Increment and Decrement

The ++ and the – – are Java’s increment and decrement operators. The increment operator increases its operand by one. The decrement operator decreases its operand by one. For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Similarly, this statement:

x = x - 1;

is equivalent to

x--;

Example:-

class BasicMath {

public static void main(String args[]) {

int a = 1 + 1;

int b = a * 3;

int c = b / 4;

int d = c - a;

int e = -d;

int x = 42;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

System.out.println("e = " + e);

System.out.println("x mod 10 = " + x % 10);

int k=1;

int h=2;

k += 5;

int h *= 4;

System.out.println("k = " + k);

System.out.println("h = " + h);

int m=1;

m++;

System.out.println("m= " + m);
}

}

Output:-

a = 2

b = 6

c = 1

d = -1

e = 1

x mod 10 = 2

k = 6

h = 8

m = 2

Above program describes simple arithmetic operations on a, b, c, d & e variable, modus operation on x variable, arithmetic assignment on k & h variable and increment operation on m variable.
3. Write the program to convert a decimal number to binary form and display the value.

 (Dec 08) (4m)

Ans :-

Import java.lang.*;

Import java.io.*;

public class DecimalToBinary

{

public static void main(String args[]) throws IOException

{

BufferedReader bf=new BufferedReader(new InputstreamReader(System.in));
try

{

System.out.println(“Enter one Decimal Number for conversion : ”);

int i = Integer.parseInt(bf.readLine);

}

catch(Exception e)

{

System.out.println("I/O Error");

}

String binary = Integer.ToBinaryString(i);

System.out.println(“After conversion Binary no is : ”+binary);

}

}
Output :-
Enter one Decimal Number for conversion : 2
After conversion Binary no is : 10
Here, we have to create a Buffered object to store the input from the user which binary form we have to find using this program which is fetched with the help of InputStream object. Now use the ParseInt method for converting the parses the string argument to a decimal integer and define 'i' as an integer. Then we have to use a Integer Wrapper Class function to convert integer value to Binary String which is stored in ‘binary’ variable whose value is displayed using println statement.

4. Describe various Bitwise operators with example? (Dec 08) (4 m) (Note: List all operators but explain only 4 if asked for 4 marks.)
Ans:- Java defines several bitwise operators which can be applied to the integer types, long, int, short, char, and byte. These operators act upon the individual bits of their operands. They are summarized in the following table:
[image: image2.emf]
Since the bitwise operators manipulate the bits within an integer, it is important to understand what effects such manipulations may have on a value. Specifically, it is useful to know how Java stores integer values and how it represents negative numbers.
The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all other cases. Here is an example:

 00101010
 42

&00001111
 15

 00001010
 10

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then the resultant bit is a 1, as shown here:

00101010
42

| 00001111
15

00101111
47

The Bitwise XOR
The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1. Otherwise, the result is zero.
 00101010
42

^00001111
15

 00100101
37
The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times. It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value.

0100 0000
64

<<2

1 0000 0000
256
The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value.

00100011 35

>> 2

00001000 8

The Unsigned Right Shift

The >> operator automatically fills the high-order bit with its previous contents each time a shift occurs. This preserves the sign of the value. If you are shifting something that does not represent a numeric value, you may not want sign extension to take place. This situation is common when you are working with pixel-based values and graphics. In these cases you will generally want to shift a zero into the high-order bit no matter what its initial value was. This is known as an unsigned shift. To accomplish this, you will use Java’s unsigned, shift-right operator, >>>, which always shifts zeros into the high-order bit.

int a = -1;

a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int

>>>24

00000000 00000000 00000000 11111111 255 in binary as an int
5. Why Java is popular for internet? Explain.(May 09) (4 m)

Ans: - Internet users can use Java to create applet programs and run them locally using a "Java-enabled browser" such as HotJava. They can also use a Java- enabled browser to download an applet located on a computer anywhere in the Internet and run it on his local computer.

Internet users can also set up their Web sites containing Java applets that could be used by other remote users of Internet. The ability of Java applets to hitch a ride on the Information Superhighway has made Java a unique programming language for the Internet. In fact, due to this, Java is popularly known as Internet language.

Incorporation of Java into the Web pages has made it capable of supporting animation, graphics, games, and a wide range of special effects. With the support of Java, the Web has become more interactive and dynamic. On the other hand, with the support of Web, we can run a Java program on someone else's computer across the Internet.

Java communicates with a Web page through a special tag called <APPLET> Figure illustrates this process. The figure shows the following communication steps

· The user sends a request for an HTML document to the remote computer's Web server. The Web server is a program that accepts a request, processes the request, and sends the required document.

· The HTML document is returned to the user's browser. The document contains the APPLET tags which Identifies the apples.

· The corresponding apples bytecode is transferred to the user s computer. This bytecode had been previously created by the Java compiler using the Java source code file for that applet.

· The Java-enabled browser on the user's computer Interprets the bytecodes and provides output.
· The user may have further Interaction with the apples but with no further downloading from the provider's Web server. This is because the bytecode contains all the information necessary to interpret the apples
[image: image3.jpg]User Computer Remote Computer

Applet Source
Code
I
I~

Java Bytecode
Web
Browser

Applet Tag

HTML Document

Web Server

USER

Java's interaction with the web

6. State any four decision making statement along with their syntax (4m) (May 09)
Ans :-

If

The if statement is Java’s conditional branch statement. It can be used to route program
execution through two different paths. Here is the general form of the if statement:

if (condition) statement1;

else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly braces (that is, a block). The condition is any expression that returns a boolean value.

The else clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise, statement2 (if it exists) is executed. In no case will both statements be executed. For example, consider the following:

int a, b;

// ...

if(a < b) a = 0;

else b = 0;

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are

they both set to zero.

Nested If

A nested if is an if statement that is the target of another if or else. Nested ifs are very common in programming. When you nest ifs, the main thing to remember is that an else statement always refers to the nearest if statement that is within the same block as the else and that is not already associated with an else. Here is an example:

if(i == 10) {

if(j < 20) a = b;

if(k > 100) c = d; // this if is

else a = c; // associated with this else

}

else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20), because it is not

in the same block (even though it is the nearest if without an else). Rather, the final else

is associated with if(i==10). The inner else refers to if(k>100), because it is the closest if

within the same block.

Switch

The switch statement is Java’s multiway branch statement. It provides an easy way to

dispatch execution to different parts of your code based on the value of an expression.

As such, it often provides a better alternative than a large series of if-else-if statements.

Here is the general form of a switch statement:

switch (expression) {

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

...

case valueN:

// statement sequence

break;

default:

// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified in the case statements must be of a type compatible with the expression. Each case value must be a unique literal (that is, it must be a constant, not a variable). Duplicate case values are not allowed.

While

The while loop is Java’s most fundamental looping statement. It repeats a statement or block while its controlling expression is true. Here is its general form:

while(condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long as the conditional expression is true. When condition becomes false, control passes to the next line of code immediately following the loop. The curly braces are unnecessary if only a single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of “tick”:

while(n > 5) {

System.out.println("tick " + n);

n--;

}
7. Why Java is called as truely object oriented? Explain. (4 m) (May 09, Dec 09)

Ans: - Java is a true object-oriented language. Almost everything in Java is an object. All program code and data reside within objects and classes. Java comes with an extensive set of classes, arranged in packages that we can use in our programs by inheritance. The object model in Java is simple and easy to extend.

Although influenced by its predecessors, Java was not designed to be source-code compatible with any other language. This allowed the Java team the freedom to design with a blank slate. One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing liberally from many seminal object-software environments of the last few decades, Java manages to strike a balance between the purist’s “everything is an object” paradigm and the pragmatist’s “stay out of my way” model. The object model in Java is simple and easy to extend, while simple types, such as integers, are kept as high-performance non objects.
It also satisfies all the features of Object Oriented programming like: Objects and Classes, Data Abstraction and Encapsulation, Inheritance, Polymorphism, Compile Time and Runtime Mechanisms.

8. Write a program to generate Fibonacci series for any number using loop (4 m) (May 09)
Ans:-

import java.io.*;
import java.util.*;
public class Fibonacci {
public static void main(String[] args) throws Exception {
 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
 System.out.print("Enter value of n: ");
 String st = reader.readLine();
 int num = Integer.parseInt(st);
 int f1=0,f2=0,f3=1;
 for(int i=1;i<=num;i++){
 System.out.println(f3);
 f1=f2;
 f2=f3;
 f3=f1+f2;
 }
}
}

Here, we have to create a Buffered object to store the input number from the user which will used to indicate up till which number we have to find Fibonacci series which is fetched with the help of InputStream object. Now use the ParseInt method for converting the parses the string argument to a decimal integer and define 'num' as an integer. First two Fibonacci numbers are 0 and 1, and each subsequent number is the sum of the previous two, therefore we have initialise f1, f2 to 0 and f3 to 1 then we have to add 2 number in series in order to generate Fibonacci series we have to find the series up to the number which is entered by user.

9. What is Byte Code? Explain any two tools available in JDK (4 m) (May 09)

Ans:- The key that allows Java to solve both the security and the portability problems just described is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a highly optimized set of instructions designed to be executed by the Java run-time system, which is called the Java Virtual Machine (JVM). That is in its standard form, the JVM is an interpreter for bytecode.
Translating a Java program into bytecode helps makes it much easier to run a program in a wide variety of environments. The reason is straightforward: only the JVM needs to be implemented for each platform. Once the run-time package exists for a given system, any Java program can run on it. Remember, although the details of the JVM will differ from platform to platform, all interpret the same Java bytecode. If a Java program were compiled to native code, then different versions of the same program would have to exist for each type of CPU connected to the Internet. This is, of course, not a feasible solution. Thus, the interpretation of bytecode is the easiest way to create truly portable programs.
The Java Development Kit comes with a collection of tools that are used for developing and running Java programs. They include:

[image: image4.png]Java Development Tools

Tool Description

appletviewer “Enables us torun Java applets (vithout achually Using Java-compatible browser).

java, Javainterpreter, which nums applets and applications by reading andinterpreting
bytecode files.

javae ‘The Java compiler, which translates Java sourcecode to bytecode fles that the
interpreter canunderstand.

javadoe Ceates HTML-format documentation from Java source code fils.

javah ‘Producesheader fles for use with native methods.

javap Java disassembler, which enables usto convert bytecode files into a program
description.

o Java debugger which helps us to find erors in ou programs.

10. Differentiate between break and continue statement (4 m) (May 09)
	Break
	Continue

	Break statement is used to break the loop
	Continue statement continues the execution of loop.

	Break uses break keyword
	Continue statement uses continue keyword.

	Break statement is a jumping statement may be from one loop to other.
	Continue is a non-jumping statement.

	Break immediately breaks the loop when the given condition is true. The program control gets shifted to some to other area of program
	Continue statement gets the control of the program back from where it has started.

	Example : -

for(int i=0; i<100; i++) {

if(i == 4) break; // terminate loop if i is 4

System.out.println("i: " + i);

}
	Example : -

for(int i=0; i<10; i++) {

System.out.print(i + " ");

if (i%2 == 0) continue;

System.out.println(""); }

11. Write all primitive data types available in Java with their storage sizes in bytes (4m)(Dec 09)

Ans :- Primitive types (also called intrinsic or built-in types) can be divided into two categories

Numeric and Non Numeric Data Types:-

Numeric Data type is further classified into Integer and Floating point and Non Numeric Data type is classified into Character and Boolean

Integers

Java defines four integer types: byte, short, int, and long. All of these are signed, positive and negative values. Java does not support unsigned, positive-only integers The width of an integer type should not be thought of as the amount of storage it consumes, but rather as the behavior it defines for variables and expressions of that type. The Java run-time environment is free to use whatever size it wants, as long as the types behave as you declared them. In fact, at least one implementation stores bytes and shorts as 32-bit (rather than 8- and 16-bit) values to improve performance, because that is the word size of most computers currently in use.

Name
 Width
Bytes
Range

Long

64
 8
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Int

32
 4
–2,147,483,648 to 2,147,483,647

Short

16
 2
–32,768 to 32,767

Byte

 8
 1
–128 to 127

Floating-Point Types

Floating-point numbers, also known as real numbers, are used when evaluating expressions that require fractional precision. For example, calculations such as square root, or transcendentals such as sine and cosine, result in a value whose precision requires a floating-point type.

Name

 Width in Bits
 Bytes
 Approximate Range

Double
 64
 8

 4.9e–324 to 1.8e+308

Float

 32
 4

 1.4e−045 to 3.4e+038

Characters

In Java, the data type used to store characters is char. However, C/C++ programmers beware: char in Java is not the same as char in C or C++. In C/C++, char is an integer type that is 8 bits wide. This is not the case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a fully international character set that can represent all of the characters found in all human languages. It is a unification of dozens of character sets, such as Latin, Greek, Arabic, Cyrillic, Hebrew, Katakana, Hangul, and many more. For this purpose, it requires 16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no negative chars.

Booleans

Java has a simple type, called boolean, for logical values. It can have only one of two possible values, true or false. This is the type returned by all relational operators, such as a < b. boolean is also the type required by the conditional expressions that govern the control statements such as if and for.

12. Write a program to accept a number and print its factorial (4 m) (Dec 09)
Ans:

import java.io.*;
class Factorial{
 public static void main(String[] args) {
 try{
 BufferedReader ob = new BufferedReader(new InputStreamReader(System.in));
 System.out.println("enter the number");
 int a= Integer.parseInt(ob.readLine());
 int fact= 1;
 System.out.println("Factorial of " +a+ ":");
 for (int i= 1; i<=a; i++){
 fact=fact*i;
 }
 System.out.println(fact);
 }
 catch (Exception e){}
 }
}

Here, we have to create a buffer for the string class that can be used to instantiate a changeable object for storing and processing a string of character. The strings length and content change as soon as any object is inserted, replaced or removed from the StringBuffer object.

Now create a buffer object that inherits properties from the string object class. Now create an InputStreamReader that reads bytes and decodes them into character by using certain 'charset'. Now use the ParseInt method for converting the parses the string argument to a decimal integer and define 'a' as an integer. Take an integer variable as fact=1 and insert the message in the System method.

Now applying for loop with conditions as integer i=1(intializer), i<=a and i++ as increment operator. So output result will be like fact=fact*i.

13. Explain concept of JVM with respect to portability feature of Java (4 m) (Dec 09)

Ans :- The key that allows Java to solve both the security and the portability problems just described is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is a highly optimized set of instructions designed to be executed by the Java run-time system, which is called the Java Virtual Machine (JVM). That is,in its standard form, the JVM is an interpreter for bytecode.
 This may come as a bit of a surprise. As you know, C++ is compiled to executable code. In fact, most modern languages are designed to be compiled, not interpreted—mostly because of performance concerns. However, the fact that a Java program is executed by the JVM helps solve the major problems associated with downloading programs over the Internet.

 Here is why. Translating a Java program into bytecode helps makes it much easier to run a program in a wide variety of environments. The reason is straightforward: only the JVM needs to be implemented for each platform. Once the run-time package exists for a given system, any Java program can run on it. Remember, although the details of the JVM will differ from platform to platform, all interpret the same Java bytecode. If a Java program were compiled to native code, then different versions of the same program would have to exist for each type of CPU connected to the Internet. This is, of course, not a feasible solution. Thus, the interpretation of bytecode is the easiest way to create truly portable programs.

 The fact that a Java program is interpreted also helps to make it secure. Because the execution of every Java program is under the control of the JVM, the JVM can contain the program and prevent it from generating side effects outside of the system. As you will see, safety is also enhanced by certain restrictions that exist in the Java language. When a program is interpreted, it generally runs substantially slower than it would run if compiled to executable code. However, with Java, the differential between the two is not so great. The use of bytecode enables the Java run-time system to execute programs much faster than you might expect.
[image: image5.emf]
 (Java Virtual Machine) JVM

14. List different data types in Java (4m) (May 10)

Ans :- Following is the list of Data types used in Java:-
[image: image6.png]Numeric

L

Primitive
(Intrinsic)

o

'

Non-numeric l

Classes

]

r

} }

Y
L Integer l F;loating—point ‘ Eharactcr] [Boolean J

Interface

Non-Primitive
(Derived)

Arrays l

15. Write a program to check whether the entered number is prime or not (May 10) (4m)
Ans:-

class Prime

{

public static void main(String args[])

{

int i,num=1,n=20;

 BufferedReader bf=new BufferedReader(new InputStreamReader(System.in));

try

{

System.out.println("Enter the number for checking : - ");

num= Integer.ParseInt(bf.readLine());

}

catch(Exception e)

{

System.out.println("I/O Error");

}

i=2;

while(i<=num)

{

if(num%i==0)

break;

i++;

}

if(i==num)

{ System.out.println("It is a Prime Number"); }

Else

{ System.out.println("It is not a Prime Number"); }

}

}

OUTPUT

Enter the number for checking : - 7
It is a Prime Number

First of all we have to define a class "Prime". Java I/O package has a input stream and a output stream in which input stream is used for reading the stream and memory allocating and the output stream used for writing bytes. As in this program we are going to insert certain instruction by creating buffer reader class. Here we have to create a buffer for the string class that can be used to instantiate a changeable object for storing and processing a string of character. Now use the ParseInt method for converting the parses the string argument and define 'num' as an integer.

Now applying in this program we use 'while' loop. For loop will start from 2 to entered number. In while loop we check whether the number divide it from 2 to less than those number. If number is divided by any number that means it is not prime otherwise prime number.

16. Explain relational and logical operator in Java (May 10) (4m)
Ans :

Relational Operators

The relational operators determine the relationship that one operand has to the other. Specifically, they determine equality and ordering. The relational operators are shown here:

[image: image7.emf]
[image: image8.emf]
The outcome of these operations is a boolean value. The relational operators are most frequently used in the expressions that control the if statement and the various loop statements. As stated, the result produced by a relational operator is a boolean value. For example, the following code fragment is perfectly valid:

int a = 4;

int b = 1;

boolean c;

c= a < b;

In this case, the result of a<b (which is false) is stored in c because a value is less than b value.
c = a == b;

In this case, the result of a==b (which is false) is stored in c because a and b value is unequal.
c = a != b;

In this case, the result of a!=b (which is true) is stored in c because a and b value is unequal.
c = a >= b;

In this case, the result of a>=b (which is true) is stored in c because a value is greater than b value. (If a value is equal with b value then also it would have stored true in c)

Boolean Logical Operators

The Boolean logical operators shown here operate only on boolean operands. All of the binary logical operators combine two boolean values to form a resultant boolean value.

[image: image9.emf]
The logical Boolean operators, &, |, and ^, operate on boolean values in the same way that they operate on the bits of an integer.
The AND operator, &, produces a True if both input are also True

The OR operator, |, produces a True if either of the input is True

The XOR operator, ^, produces a True if exactly one input is True. Otherwise, the result is False

The logical ! operator inverts the Boolean state: !true == false and !false == true.
The following table shows the effect of each logical operation:

[image: image10.emf]
Here is a program that is almost the same as the BitLogic example shown earlier, but it operates on boolean logical values instead of binary bits:

THE JAVA LANGUAGE

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in many other computer languages. These are secondary versions of the Boolean AND and OR operators, and are known as short-circuit logical operators. As you can see from the preceding table, the OR operator results in true when A is true, no matter what B is. Similarly, the AND operator results in false when A is false, no matter what B is. If you use the || and && forms, rather than the | and & forms of these operators, Java will not bother to evaluate the right-hand operand when the outcome of the expression can be determined by the left operand alone. This is very useful when the right-hand operand depends on the left one being true or false in order to function properly. For example, the following code fragment shows how you can take advantage of short-circuit logical evaluation to be sure that a division operation will be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time exception when denom is zero. If this line of code were written using the single & version of AND, both sides would have to be evaluated, causing a run-time exception when denom is zero.
17. Explain typecasting with suitable example (May 11) (4m)
Ans: Although the automatic type conversions are helpful, they will not fulfil all needs. For example, what if you want to assign an int value to a byte variable? This conversion will not be performed automatically, because a byte is smaller than an int. This kind of conversion is sometimes called a narrowing conversion, since you are explicitly making the value narrower so that it will fit into the target type. To create a conversion between two incompatible types, you must use a cast. A cast is simply an explicit type conversion.
It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For example, the following fragment casts an int to a byte. If the integer’s value is larger than the range of a byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range.

int a;

byte b;

// ...

b = (byte) a;

class Conversion {

public static void main(String args[]) {

byte b;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;

System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");

i = (int) d;

System.out.println("d and i " + d + " " + i);

System.out.println("\nConversion of double to byte.");

b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}

This program generates the following output:E JAVA LANGUAGE
Conversion of int to byte.

i and b 257 1

Conversion of double to int.

d and i 323.142 323

Conversion of double to byte.

d and b 323.142 67

18. Explain

a. Platform independence

b. Data encapsulation features of Java

Ans:-

a. Platform independence : For this Answer Refer Answer of Question No 1
b. Data encapsulation: The wrapping up of data and methods into a single unit (called class) is known as encapsulation. Data encapsulation is the most striking feature of a class. The data is not accessible to the outside world and only those methods, which are wrapped in the class, can access it. These methods provide the interface between the object's data and the program. This insulation of the data from direct access by the program is called data hiding. Encapsulation makes it possible for objects to be treated like 'black boxes', each performing a specific task without any concern for internal implementation
19. What is API? Name any three packages available in Java API (May 11) (4m)
Ans:- The Java Standard Library (or API) includes hundreds of classes and methods grouped into several functional packages.
Most commonly used packages are:

· Language Support Package: A collection of classes and methods required for implementing basic features of Java.

· Utilities Package: A collection of classes to provide utility functions such as date and time functions.

· Input/Output Package: A collection of classes required for input/output manipulation.

· Networking Package: A collection of classes for communicating with other computers via Internet.

· AWT Package: The Abstract Window Tool Kit package contains classes that implements platform- independent graphical user interface.

· Applet Package: This includes a set of classes that allows us to create Java applets. The use of these library classes will become evident when we start developing Java programs.
