
Activity and Multimedia

with Databases

Prof. Prasad Koyande

Vidyalankar Polytechnic

Introduction to Activity in Android

 The activity represents a single screen or

interfaces that allows the user to interact with

an application.

 Depending on the application on the

application types, applications have single to

multiple activities.

 Activities could be independent of one

another, thereby enabling a different

application to use those activities

 Each activity is independent of the others.

 Each one is implemented as a subclass of

the Activity base class.

 Moving from one activity to another is

proficient by having the current activity which

start the next one

 There are two methods to implement activity:

 onCreate(Bundle) is a method in which we

initialize our activity. Here we usually call

setCotentView(int)with a layout resource defining

the UI, and using findViewById(int) to retrieve the

widgets in that UI which we need to interact with

programmatically. �

 onPause() is another method in which we deal

with the user leaving the activity. Any changes

made by the user should at this point be

committed

INTENT

 An Intent is a messaging object that you can use

to request an action from an app component.

 An Intent is basically an intention to do an

action.

 It is a way to communicate between Android

components to request an action from a

component, by different components.

 It's like a message that Android listens for and

then react accordingly by identifying and

invoking the app's appropriate component (like

an Activity, Service, Content Provider, etc.).

Uses of Intent in Android

 To Start an Activity

 We can start a new instance of an Activity by

passing an Intent to startActivity().

 The Intent describes the activity to start and

carries any necessary data along.

 To Start a Service

 We can start a service to perform a one-time

operation (such as downloading a file) by passing

an Intent to startService().

 The Intent describes which service to start and

carries any necessary data.

To Deliver a Broadcast

 To Deliver a Broadcast

 The system delivers various broadcasts for

system events, such as when the system boots

up or the device starts charging

 We can deliver a broadcast to other apps by

passing an Intent to sendBroadcast() or

sendOrderedBroadcast().

Types of Intents

 There are two types of Intents

 Explicit Intents

 Implicit Intents

Explicit Intents

 When we explicitly define which Android

component should be opened on some user

action, then you use explicit intents.

 We generally use an explicit intent to start a

new component in our own app, because we

know which exact activity or service you want

to start.

 For example, you can start a new activity in

response to a user action or start a service to

download a file in the background.

Create an Explicit Intent
 We need to make an Intent object. The constructor of the

Explicit Intent's object needs two parameters as follows:

 Context c: This represents the object of the Activity from where

you are calling the intent.

 Java file name: This represents the name of the java file of the

Activity you want to open.

 Call startActivity() method and pass the intent's object

as the parameter.

 To pass some information or data to the new Activity we

are calling, you can do this by calling putExtra() method

before the startActivity() method.

 This method accepts key-value pair as its parameter.

 i.putExtra(“key1”,”I am value1”);

 i.putExtra(“key2”,”I am value2”);

 startActivity(i);

 To receive the data in the new Activity and

use it accordingly, you need to call the

getIntent() method and then getStringExtra()

method in the java class of the Activity you

want to open through explicit intent.

 String a=getIntent().getStringExtra(“key1”);

 Example

 Intent intent = new Intent(getApplicationContext(), Second.class);

 intent.putExtra("message", str);

 startActivity(intent);

In Second Activity

Intent intent = getIntent();

String str = intent.getStringExtra("message");

import android.content.Intent;

public class FirstActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_first);

 }

 public void callSecondActivity(View view){

 Intent i = new Intent(getApplicationContext(), SecondActivity.class);

 i.putExtra("Value1", “MAD");

 i.putExtra("Value2", “Prof. Prasad Koyande");

 startActivity(i);

}

}

import android.content.Intent;

public class SecondActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_second);

 Bundle extras = getIntent().getExtras();

 String value1 = extras.getString("Value1");

 String value2 = extras.getString("Value2");

 Toast.makeText(getApplicationContext(),"Values are:\n

First value: "+value1+ "\n Second Value: "+value2,

Toast.LENGTH_LONG).show();

 }

}

Implicit Intents

 When we just have to tell what action we want to

perform without worrying which component will

perform it.

 Implicit intents do not name a specific component

to perform a particular action, but instead it

declares a general action to be performed, which

allows any component, even from another app to

handle it.

 For example, if we want to show a specific location

of the user on a map, we can use an implicit intent

to pass the coordinates through the intent and

then any other app, which is capable of showing

the coordinates on a map will accept that intent.

Create an Implicit Intent

 We need to make an Intent object.

 The constructor of the Implicit Intent's object

needs a type of action we want to perform.

 An action is a string that specifies the generic

action to be performed.

 ACTION_VIEW: This action is used when you have

some information that an activity can show to the user,

such as a photo to view in a Gallery app, or an

address to view in a Map app.

 ACTION_SEND: This action is used when you have

some data that the user can share through another

app, such as an Email app or some Social Networking

app.

 Intent i = new Intent(Intent.ACTION VIEW);

 We need to provide some data for the action

to be performed.

 Data is typically expressed as a URI (Uniform

Resource Identifier) which provides data to

the other app so that any other app which is

capable of handling the URI data can perform

the desired action.

 i.setData(Uri.parse(http://www.google.co.in));

 Call startActivity() method in the end with the

intent object as the parameter.

import android.content.Intent;

import android.net.Uri;

public class MainActivity extends AppCompatActivity {

 Button button;

 EditText editText;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 button = findViewById(R.id.button);

 editText = findViewById(R.id.editText);

 button.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 String url=editText.getText().toString();

 Intent intent=new Intent(Intent.ACTION_VIEW, Uri.parse(url));

 startActivity(intent);

 }

 });

 }}

Intent Filter

 Intent_filters is a very powerful way to

connect different applications together hence

allowing better user experience.

 They take care of intent resolution to match

activities, services and broadcast receiver.

 Intent filter are declared in the

AndroidManifest.xml. an intent filters is an

instance of the IntentFilter class.
<intent-filter android:icon=”drawable resource”

 android:label=”string resource”

 android:priority=”integer”>

. . .

</intent-filter>

ACTIVITY LIFE CYCLE

Broadcast Life Cycle

CONTENT PROVIDER

 A Content Provider component supplies data

from one application to others on request.

 Such requests are handled by the methods of

the ContentResolver class.

 A content provider can use different ways to

store its data and the data can be stored in files,

in a database or even over a network.

 Content Providers support the four basic

operations, normally called CRUD-operations.

 With content providers those objects simply

represent data as most often a record of a

database, but they could also be a photo on our

SD-card or a video on the web.

Content URIs

 Whenever we want to access data

from a content provider we have to

specify a URI. URIs for content

providers look like this:

content://authority/optionalPath/optionalId

 Two types of URI

 directory-based URIs

 id-based URIs

Available standard Content

Providers

1. CalendarContract SDK 14: Manages the calendars on

the user’s device.

2. Browser SDK 1: Manages our web-searches, bookmarks

and browsing-history.

3. CallLog SDK 1: Keeps track of our call history.

4. MediaStore SDK 1: The content provider responsible for

all our media files like music, video and

pictures.

5. Settings SDK 1: Manages all global settings of our

device.

6. UserDictionary SDK 3: Keeps track of words we add to

the default dictionary.

Create Content Provider

1. Create a Content Provider class that

extends the ContentProviderbaseclass

2. Define our content provider URI address

which will be used to access the content.

3. Create our own database to keep the

content

4. Content Provider queries to perform different

database specific operations

5. Register our Content Provider in our activity

file using tag

List of methods we need to override

in Content Provider class

1. onCreate(): This method is called when the provider is

started.

2. query(): This method receives a request from a client.

The result is returned as a Cursor object.

3. insert(): This method inserts a new record into the

content provider.

4. delete(): This method deletes an existing record from

the content provider.

5. update(): This method updates an existing record from

the content provider.

6. getType(): This method returns the MIME type of the

data at the given URI.

FRAGMENTS

 A fragment is a self-contained, modular section of an

application’s User Interface (UI) and corresponding

behavior that can be embedded within an activity.

 Fragments can be assembled to create an activity

during the application design phase, and added to or

removed from an activity during application runtime.

 Fragments may only be used as part of an activity and

cannot be instantiated as standalone application

elements.

 Fragments are stored in the form of XML layout files

and may be added to an activity either by placing

appropriate elements in the activity’s layout file, or

directly through code

Creating a Fragment

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="@color/red" >

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:text="@string/fragone_label_text"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</RelativeLayout>

package com.example.myfragmentdemo;

import android.support.v4.app.Fragment;

public class FragmentOne extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 return inflater.inflate(R.layout.fragment_one_layout,

 container, false);

 }

}

Adding a Fragment to an Activity

using the Layout XML File

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".FragmentDemoActivity" >

 <fragment

 android:id="@+id/fragment_one"

 android:name="com.example.myfragmentdemo.myfragmentdemo.FragmentOne"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_centerVertical="true"

 tools:layout="@layout/fragment_one_layout" />

</RelativeLayout>

Adding and Managing Fragments

in Code

FragmentOne firstFragment = new FragmentOne();

firstFragment.setArguments(getIntent().getExtras());

FragmentManager fragManager =

getSupportFragmentManager();

FragmentTransaction transaction =

fragManager.beginTransaction();

transaction.add(R.id.LinearLayout1, firstFragment);

transaction.commit();

1. Create an instance of the

fragment’s class.

2. Pass any additional intent

arguments through to the class

instance.

3. Obtain a reference to the fragment

manager instance.

4. Call the beginTransaction() method

on the fragment manager instance.

5. Call the add() method of the

fragment transaction instance,

passing through as arguments the

resource ID of the view that is to

contain the fragment and the fragment

class instance.

6. Call the commit() method of the

fragment transaction.

SERVICE
 A service is an application component which runs

without direct interaction with the user in the

background.

 Services are used for repetitive and potentially long

running operations, i.e., Internet downloads,

checking for new data, data processing, updating

content providers.

 Services run with a higher priority than inactive or

invisible activities

 Services can also be configured to be restarted if

they get terminated by the Android system once

sufficient system resources are available again.

 Services are started with two methods namely,

Context.startService(), Context.bindService().

SERVICE (cont…)

 Services are the faceless components of

Android as they have their individual interfaces.

 Services are communicate with other Android

components and use the Android’s notification

framework to notify the users.

 Services are job-specific and they are unaffected

by the switching activity.

 They will continue to run in the background even

if you switch to the interface of a different

application.

Service Life Cycle
callback method

onStartCommand()
START_STICKY

START_NOT_STICKY

START_REDELIVER_INTENT

public class MyService extends Service {

//Declaring the handler

private Handler handler;

//Declaring our implementation of Runnable

private Runner runner;

/*

Regardless of whether you want our service to be binded

or not you should always implement onBind. You should return

null if you

dont want it to bind

*/

@Nullable

@Override

public IBinder onBind(Intent intent) {

return null;

}

/*

Initialization of Handler and Runner

*/

public void onCreate() {

super.onCreate();

Toast.makeText(this, "Service Started",

Toast.LENGTH_LONG).show();

handler = newHandler();

runner = newRunner();

}

// Starting the Runnable with handler

public int onStartCommand(Intent intent,

int id, int startID) {

handler.post(runner);

return START_STICKY;

}

@Override

public void onDestroy() {

super.onDestroy();

handler.removeCallbacks(runner);

Toast.makeText(this, "Service Destroyed",

Toast.LENGTH_LONG).show();

}

public class Runner implements Runnable

 {

@Override

public void run() {

Log.d("AndroidClarified", "Running");

handler.postDelayed(this, 1000 * 5);

}

}

}

<?xml version="1.0" encoding="utf-8"?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.androidclarified.serviceapp">

<application

android:allowBackup="true"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:roundIcon="@mipmap/ic_launcher_round"

android:supportsRtl="true"

android:theme="@style/AppTheme">

<activityandroid:name=".MainActivity">

<intent-filter>

<actionandroid:name="android.intent.action.MAIN"/>

<categoryandroid:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

<serviceandroid:name=".MyService"/>

</application>

</manifest>

public class MainActivity extends AppCompatActivity implements

View.OnClickListener{ private Button startButton, stopButton; @Override

protectedvoidonCreate(Bundle savedInstanceState){

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

startButton = (Button)findViewById(R.id.start_button);

stopButton = (Button)findViewById(R.id.stop_button);

startButton.setOnClickListener(this);

stopButton.setOnClickListener(this);

}

@Override

public void onClick(View v){

Intent intent = newIntent(this, MyService.class);

switch(v.getId()){

case R.id.start_button:

startService(intent);

break;

case R.id.stop_button:

stopService(intent);

break;

}}}

MULTIMEDIA FRAMEWORK

PLAY AUDIO AND VIDEO

 The following classes are used to play sound

and video in the Android framework:

 MediaPlayer: This class is the primary API for

playing sound and video.

 AudioManager: This class manages audio sources

and audio output on a device.

 Manifest Declarations:

 Internet Permission: If you are using MediaPlayer

to stream network-based content
<uses-permissionandroid:name="android.permission.INTERNET"/>

 Wake Lock Permission :If our player application needs to keep the

screen from dimming or the processor from sleeping

 <uses-permissionandroid:name="android.permission.WAKE_LOCK"/>

Basic MediaPlayer Tasks

1. Load a media file for playback. This is done with the methods

setDataSource(), prepare(), and prepareAsync().

2. Start playback / Play audio. This is handled by start().

3. Pause playback (once playback has started). This is handled by pause().

4. Stop playback and reset the MediaPlayer, so that you can load another

media file into it. This is handled by reset().

5. Find the length of a song (in ms). This is handled by getDuration().

6. Find what part of the song is playing. This is handled by

getCurrentPosition().

7. Jump to a specific time position (in ms) in the song and play from there.

This is handled by seekTo(position).

8. Check to see if audio is being played back right now. This is handled by

isPlaying().

9. Find out when a song is done playing. This is handled by attaching a

MediaPlayer.OnCompletionListener. Our code will get an onCompletion()

callback from the listener.

10. Deallocate resources used by the player. This is handled by release(), which

releases all the resources attached to the player. After being released the player

is no longer usable.

Audio / Video Examples

Java File

Audio Example

Design File

Java File

Design File

Video Example

programs/audio/MainActivity.java
programs/audio/activity_main.xml
programs/video/MainActivity.java
programs/video/activity_main.xml

TEXT TO SPEECH

 Text to speech (TTS) makes an android device read

the text and convert it to audio out via the speaker.

 Android TTS supports multiple languages.

 Effectively used in

 Mobile APPs dedicated to visually impaired

people

 Educational app for kids

 Pronunciation learning app

 TextToSpeech enhances interaction between the

user and the mobile application

 Android TTS was available from version 1.6

 It has features to control speed, pitch of speech as

well as type of language.

TEXT TO SPEECH EXAMPLE

Java File

TTS Example

Design File

programs/tts/MainActivity.java
programs/tts/activity_main.xml

SENSOR

 Android devices have built-in sensors that

measure motion, orientation, and various

environmental conditions.

 Sensors are capable of providing raw data

with high precision and accuracy

 Useful to monitor three-dimensional device

movement or positioning, or changes in the

ambient environment near a device.

Categories of sensors

 Motion Sensors: Measure acceleration

forces and rotational forces along three axes.
(accelerometers, gravity sensors, gyroscopes, and

rotational vector sensors)

 Environmental Sensors: Measure various

environmental parameters, such as ambient

air temperature and pressure, illumination,

and humidity. (barometers, photometers, and

thermometers)

 Position Sensors: Measure the physical

position of a device. (Orientation sensors and

magnetometers)

Sensor types supported by the

Android Platform
Sensor Type Description Common Use

TYPE_ACCELEROMETER Hardware

Measures the acceleration force in m/s2

that is applied to a device on all three

physical axes (x, y, and z), including the

force of gravity

Motion detection (shake,

tilt, etc.)

TYPE_AMBIENT_TEMPER

ATURE

Hardware Measures the ambient room

temperature in degrees Celsius (°C)

Monitoring air

temperatures

TYPE_GRAVITY

Software

or

Hardware

Measures the force of gravity in m/s2

that is applied to a device on all three

physical axes (x, y, z)

Motion detection (shake,

tilt, etc.).

TYPE_GYROSCOPE Hardware

Measures a device's rate of rotation in

rad/s around each of the three physical

axes (x, y, and z)

Rotation detection (spin,

turn, etc.)

TYPE_LIGHT Hardware
Measures the ambient light level

(illumination) in lx

Controlling screen

brightness

TYPE_LINEAR_ACCELERA

TION
Hardware

Measures the ambient geomagnetic

field for all three physical axes (x, y, z)

in µT

Creating a compass

TYPE_ORIENTATION Software

Measures degrees of rotation that a

device makes around all three physical

axes (x, y, z).

Determining device

position

Sensor types supported by the

Android Platform (cont..)
Sensor Type Description Common Use

TYPE_PRESSURE Hardware
Measures the ambient air pressure in

hPa or mbar

Monitoring air pressure

changes

TYPE_PROXIMITY Hardware Measures the proximity of an object in

cm relative to the view screen of a

device. This sensor is typically used to

determine whether a handset is being

held up to a person's ear.

Phone position during a

call.

TYPE_RELATIVE_HUMIDITY Hardware

Measures the relative ambient humidity

in percent (%).

Monitoring dew point,

absolute, and relative

humidity

TYPE_ROTATION_VECTOR

Software

or

Hardware

Measures the orientation of a device by

providing the three elements of the

device's rotation vector

Motion detection and

rotation detection

TYPE_TEMPERATURE Hardware

Measures the temperature of the

device in degrees Celsius (°C). This

sensor implementation varies across

devices and this sensor was replaced

with the

TYPE_AMBIENT_TEMPERATURE

sensor in API Level 14

Monitoring temperature

Sensor Framework

 You can access these sensors and acquire

raw sensor data by using the Android sensor

framework

 The sensor framework includes the following

classes and interfaces:

 SensorManager

 Sensor

 SensorEvent

 SensorEventListener

Sensor Examples

Java File

Sensor Example 1

Design File

Java File

Sensor Example 2

Design File

Program to display the list of

sensors supported by the mobile

device

Program to change the

background color when device is

shuffled

programs/sensor1/MainActivity.java
programs/sensor1/activity_main.xml
programs/sensor2/MainActivity.java
programs/sensor2/activity_main.xml

BLUETOOTH

 Bluetooth is a communication network protocol,

which allow a devices to connect wirelessly to

exchange the data with other Bluetooth devices

 Bluetooth API’s provides following functionalities
1. Scan for the available Bluetooth devices within the range

2. Use local Bluetooth adapter for paired Bluetooth devices

3. Connect to other devices through service discovery

 4. Transfer data to and from other devices

 5. Manage multiple connections

Bluetooth Example

Java File

Bluetooth Example

Design File

Program to turn on, get visible, list devices and turn off

Bluetooth with help of following GUI

Manifest File

programs/bluetooth/MainActivity.java
programs/bluetooth/activity_main.xml
programs/bluetooth/AndroidManifest.xml

ANDROID ASYNCTASK

 Android AsyncTask is an abstract category

provided by android which provides the

freedom to perform significant tasks within

the background and keep the UI thread

lightweight thus making the application more

responsive.

 Android AsyncTask to perform the significant

tasks in background on a dedicated thread

and passing the results back to the UI thread.

 Use of AsyncTask in android application

keeps the UI thread responsive at all times.

Methods of AsyncTask class

 doInBackground() :

 onPreExecute() :

 onPostExecute() :

 onProgressUpdate() :

Generic Types

1. Params : The type of the parameters sent to

the task upon execution

2. Progress : The type of the progress units

published during the background computation

3. Result : The type of the result of the

background computation

ASYNCTASK Example

Java File

AsyncTask Example

Design File

programs/Async/java_file.txt
programs/Async/xml_file.txt

AUDIO CAPTURE

 The Android multimedia system framework

includes support for capturing and encoding

variety of common audio formats, so we will

simply integrate audio into our applications.

 We can record audio using the

MediaRecorder APIs if supported by the

device hardware.

Performing Audio Capture:
1. Create a new instance of android.media.MediaRecorder.

2. Set the audio source using MediaRecorder.setAudioSource().

We will probably want to use MediaRecorder.AudioSource.MIC.

3. Set output file format using

MediaRecorder.setOutputFormat().

4. Set output file name using MediaRecorder.setOutputFile().

5. Set the audio encoder using

MediaRecorder.setAudioEncoder().

6. Call MediaRecorder.prepare() on the MediaRecorder

instance.

7. To start audio capture, call MediaRecorder.start().

8. To stop audio capture, call MediaRecorder.stop().

9. When we are done with the MediaRecorder instance, call

MediaRecorder.release() on it. Calling MediaRecorder.release()

is always recommended to free the resource immediately.

CAMERA

There are two ways to integrate the camera

module

1. Using In-built Camera App

2. Writing Custom Camera App

Basics for Camera:

1. Camera

2. SurfaceView

3. MediaRecorder

4. Intent

1. Camera Permission: Our application must request

permission to use a device camera.

<uses-permission android:name="android.permission.CAMERA" />

2. Camera Features: Our application must also declare use

of camera features, for example:

<uses-feature android:name="android.hardware.camera" />

 <uses-feature android:name="android.hardware.camera"

android:required="false" />

3. Storage Permission: If our application saves images or

videos to the device's external storage (SD Card), we must

also specify this in the manifest.
 <uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

4. Audio Recording Permission: For recording audio with video capture,

our application must request the audio capture permission.

<uses-permission android:name="android.permission.RECORD_AUDIO" />

5. Location Permission: If our application tags

images with GPS location information, you

mustrequest location permission:
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Using Existing Camera Apps:

1. Compose a Camera Intent

(i) MediaStore.ACTION_IMAGE_CAPTURE

(ii) MediaStore.ACTION_VIDEO_CAPTURE

2. Start the Camera Intent

3. Receive the Intent Result

ANIMATION

 Animation is the process of creating motion

and shape change.

 Animations are useful when the screen

changes state, i.e when the content loads or

new actions become available

Android Defines Three Types

of Animations
1. View Animation:

 It define the properties of our Views that should be

animated using a technique called Tween Animation.It

take the following parameters i.e. size, time duration ,

rotation angle, start value , end value, and perform the

required animation on that object.

 You can execute the animation by specifying

transformations on our View.

 Android View animation can make animation on any View

objects, such as ImageView, TextView or Button objects.

 View animation can only animate simple properties like

position, size, rotation, and the alpha property that allows

you animate the transparency of a View.

2. Property Animation:

 Property animations are highly customizable, we

can specify the duration, the number of repeats,

the type of interpolation, and the frame rate of the

animation.

 The Property Animation system is always

preferred for more complex animations.

3. Drawable Animation:

 This animation allows the user to load drawable

resources and display them one frame after

another.

 This method of animation is useful when user

wants to animate things that are easier to

represent with Drawable resources.

 Android has provided us a class called Animation

 The Animation class has many methods given

below:

 1. start(): This method will start the animation.

 2. setDuration(long duration): This method sets the duration of an

animation.

 3. getDuration(): This method gets the duration.

 4. end(): This method ends the animation.

 5. cancel(): This method cancels the animation.

Animation Example

Java File

Animation Example

Design File

programs/Animation/animation_java.txt
programs/Animation/animation_xml.txt

SQLITE DATABASE

 SQLite is an embedded, relational database

management system (RDBMS).

 SQLite is referred to as embedded because it is

provided in the form of a library that is linked into

applications.

 As such, there is no standalone database server

running in the background.

 All database operations are handled internally within

the application through calls to functions contained in

the SQLite library.

 SQLite is written in the C programming language and

as such, the Android SDK provides a Java based

“wrapper” around the underlying database interface.

Why SQLite/Necessity of

SQLite
 1. Serverless: SQLite is serverless which does not need a detach

server process or system to operate.

2. Zero Configurations: SQLite does not require any setup or

administration.

3. Cross-platform: a complete SQLite database is stored in a single

cross-platform disk file.

4. Less Memory: SQLite is very small and light weight, less than 400

KiB completely configured or less than 250 KiB with optional featues

omitted.

5. Self-Contained: SQLite has no external dependencies.

6. Transaction: SQLite transactions are supported ACID properties to

allow safe access from multiple processes or threads.

7. Languages and operating system: SQLite supports most of the query

language featueres found in SQL92(SQL2) standared.

Database Example

Main Class File

Database Example

Design File

Adapter Class File

Message Class File

programs/sqlexample/MainActivity.java
programs/sqlexample/activity_main.xml
programs/sqlexample/myDbAdapter.java
programs/sqlexample/Message.java

