
CHAPTER 4

POINTERS

Objectives:

� Declare Pointer & Pointer arithmetic.

� Pointer to Arrays, string & Object.

� “this” pointer concept.

5.1 Concepts of Pointer: Pointer declaration, Pointer operator, address operator, Pointer arithmetic.

5.2 Pointer to Array: Searching, Insertion, deletion

5.3 Pointer to String: Searching, finding length, comparisons, concatenation, reverse

5.4 Pointer to Object: Pointer to Object, this pointer, Pointer to derived class.

5.1 Concepts of Pointer: Pointer declaration, Pointer operator, address operator, Pointer arithmetic.

 “A pointer is a variable that holds an address of another variable.”

 Consider the following figure.

 We can print the address of variable a by using & operator (address operator)

int main()

{

 int a =3;

 cout << “ address of a is : “ << &a ;

}

OUTPUT

Address of a is 6485

DECLARING AND INITIALIZING POINTER VARIABLE:

Ques : How to initialize a pointer explain with a suitable example.(May – 2003)

 Pointer is a variable, which stores an address of another variable.

 Pointer must be declared with its proper type and its name is preceded by *.

Syntax for declaring pointer: Datatype * variable-name;

Example : int * ptr;

 Where ptr is a pointer which can be used to store the address of an integer.

 Data type of pointer must be same that of the data type of a variable whose address it is going to store.

 After declaring a pointer variable, it must be initialized with the address of another variable.

 To initialize a pointer variable use following syntax: Pointer-variable = & ordinary-variable;

Example : int *ptr; // ptr is a pointer

 int a = 10; // a is ordinary variable holding an integer

 ptr = & a; //initializing pointer with the address of a

ACCESSING VALUE OF A VARIABLE USING POINTER:

 To access the value of a variable using pointer, we use * in the expression.

 Consider the following example where a is a variable of type int that holds value 10 and p is a pointer that stores

the address of variable a. In short pointer p a points to variable a;

int a =10;

int *p;

p =&a;

We can print the value of variable a using pointer using following expression.

 cout << *p;

POINTER OPERATORS:

There are two special pointer operators,

1) & is called address of operator :

This returns the address of(its operand.) a variable. Where address is the internal computer’s memory location of

variable.

cout << &a ; //prints address of variable a

2) * operator which is called “ value at address “ operator.

 The “*” is the indirection operator and it is the complement of &. It is the unary operator that returns the

value of the variable located at the address specified by its operand.

3

a

6485

Location name

Value at location

Address of location

CHAPTER 4

SAMPLE PROGRAM :

include <iostream.h>

void main()

{

 int a = 3; // ordinary variable

 int *p; // pointer variable

 p = & a; // p stores the address of a

 cout << “Adress of a = “ << &a << endl;

 cout << “ Address of a = “ << p <<endl;

 cout << “Value of a = “<< a <<endl;

 cout << “value of a = “ << *p <<endl;

}

OUTPUT

Address of a = 1003

Address o a = 1003

Value of a = 3

Value of a =3

POINTER TO POINTER:

A pointer can store the address of another pointer. In other words a pointer can point to another pointer.

In the above example pointer p points to variable a and pointer q points to pointer p.

 int a = 10;

 int * p; // pointer to ordinary variable

 int **q; // pointer to pointer

 p = & a; // p points to a

q = &p ; // q points to p.

cout << a ; // prints value of a - 10

cout << *p; // prints value of a using pointer p- 10

cout << **q ; //prints value of a using pointer q - 10

cout << &a; // prints address of a -1002

cout << p; //prints contents of p -1002

cout << q; // prints contents of q - 4000

cout << *q ; // prints value of p using pointer q – 1002 =*4000=1002

 Here a is a variable of type int and p is pointer to variable a and q is pointer to p.

 If we want to access value of variable a using pointer ,p then use the following expression, *p ;

 If we want to access value of variable a using pointer q , then use the following expression, **q ;

POINTER ARITHMETIC:

The following operation can be performed on a pointer.

1) Addition of a number to a pointer.

int a =7;

int * p = & a;

p = p+2;

2) Subtrcation of a number from a pointer

int a =7;

int * p = & a;

p = p - 2;

2) Subtraction of two pointers.

int a [4] = { 1,2,3,4};

int * p = & a [0]; // p points to the first element of array

int *q = & a [3]; // q points to the last element of array

cout << q –p;

Do not attempt the following operations on pointer.

1) Addition of two pointers.

2) Multiplying a pointer with a number.

3) Dividing a pointer by a number.

10 1002 4000

1002 4000

a P q

CHAPTER 4

Advantages of pointers

- Can return more than one value from function.

-Increasing the programming performance, using pointers we can access the variables faster.

-In case of arrays, we can decide the size of the array at runtime by allocating the necessary space Or

dynamic memory management

-Data structure handling (Linked list, Stack, queue)

5.2 Pointer to Array: Searching, Insertion, deletion

POINTERS AND ARRAYS:

 Array is a collection of variables similar data types. Array elements are always stored in contiguous memory

locations.

 A pointer for an array points to the base address of an array.

 A pointer is initialized to the memory address of first element placed inside an array.

 We can use this base address for performing arithmetic operations on an array.

 The way pointer can point to a variable, it can point to the entire array.

 The data type of a pointer should be same as that of the data type of array.

 The following figure shows array of 5 integers and their memory locations.

As shown in the diagram , the pointer variable p holds an address of the 0
th
 element in the array. The address of

the 0
th
 element is called base address of the array.

void main ()

{ int myarray [5] = { 10,20,30,40,50}; // declaring and initializing array

 int *p; // pointer p

 p = &myarray [0] ; // store base address of array in pointer.

}

NOTE : Array name itself represents the base address of the array.

That is to store the base address of array in a pointer, just assign the name of array to the pointer.

Thus following two statements have the same effect. Both store the base address of myarray in to pointer p.

1) int *p = myarray;

2) int *p = &myarray [0];

Accessing array elements using pointer.

The following program displays elements of array using pointer.

void main ()

{ int myarray [5] = { 10, 20, 30,40,50}; // declaring and initializing array

 int *p; // pointer p

 p = &myarray [0] ; // store base address of array in pointer.

 for (int i =0 ; i<=4 ; i++)

{

 cout << *p;

 p++;

}

}

OUTPUT:

10 20 30 40 50

Another way of accessing array elements using pointer.

Void main()

{ int myarray [5] = { 10, 20, 30,40,50}; // declaring and initializing array

 int *p; // pointer p

 p = &myarray [0] ; // store base address of array in pointer.

 for (int i =0 ; i<=4 ; i++)

{ cout << * (p + i) ;

}

}

10 30 40 50 20

1000 1002 1004 1006 1008 1000

p

int *p = & arr[0];

int *p = arr

CHAPTER 4

Incrementing a Pointer

 A pointer when incremented always points to an immediately next location of its type.

 That is if pointer is of type integer then it is always incremented by 2.

 If it’s a float then it is incremented by 4 and so on..

To understand ,consider the following program that prints address of all elements in array.

void main ()

{

 int arr [5] = { 10, 20, 30,40,50}; // declaring and initializing array

 int *p; // pointer p

 p = & arr [0] ; // store base address of array in pointer.

 for (int i =0 ; i<=4 ; i++)

{

 cout << *p <<” : “ << p <<endl;

 p++;

 }

}

OUTPUT

10 1000

20 1002

30 1004

40 1006

 Notice that when pointer is incremented (p++) it is incremented by 2 every time.

 PASSING AN ENTIRE ARRAY TO THE FUNCTION

Void main ()

{ void display (int * , int); // function prototype

 int a[5] = {1,2,3,4,5};

display (a , 5);

}

void display (int *p, int n)

 {

 for (int i =0 ; i<=4 ; i++)

 {

 cout << *p;

 p++;

 }

}

NOTE : If num [] is an array of integers, then remember the following

1. Name of array i.e. num represent the base address of array.i.e. num is equivalent to &num[0]

2. Expression * num and * (num + 0) are same and both give the value stored at base address (value of 0
th
 element

) of array.

3. The following expressions are same

num [I] *(num + I) * (I + num)

4. The compiler never allows us to change the base address of array.

 The following expressions will report error “ Illegal use of pointer”

 num++;

 num = num +2;

Ques : If intarray is an array of integers, why the expression intarry++ is illegal ? justify

Here intarray is an array of integers.

 We know that name of array represents the base address of the array.

 If we write,

intarray ++;

We are trying to change the base address of array.

 The compiler would never allow changing the base address this is because all that known to the compiler about

an array is its base address.

 If the base address is lost, the compiler will never be able to access the array.

10 30 40 50 20

1000 1002 1004 1006 1008

CHAPTER 4

 That is why when ever we try to alter the base address , compiler throws an error “ Illegal use of pointer”.

 If you want to manipulate the array, create another pointer and store the base address of array in it.

int intarray [5];

int * p = intarray;

 Now using pointer p you can manipulate intarray. The statement p++ will not generate error.

Ques : differentiate variable and pointer variable: (specimen paper)

Variable Pointer variable

The c++ ordinary variable is a place holder where we

can store values of different type such as integer,

floating –point , character etc.

Pointer is a special variable that stores the address of another

variable.

Declaring variable:

Syntax : Data-type variable-name;

Example: int a ;

Declaring pointer variable:

Syntax : Data-type *variable-name;

Example: int *p;

Pointer declaration is always preceded by *

Initializing variable;

Syntax :

Datatype variable –name = value;

Example : int a = 10;

Initializing pointer variable;

Syntax :

Datatype * pointer-variable = & variable;

Example: int *p = &a;

Pointer is always assigned the address of another variable.

Accessing value of variable:

Cout << a;

Accessing value of variable using pointer.

Cout << *p;

Where pointer p points to variable a;

Accessing the memory location using variable is

slower than accessing using pointer.

Accessing the memory location using pointer is faster than

accessing using a variable.

PROGRAMS BASED ON POINTER TO ARRAY

 Program to search an element in the array using pointer: (Searching)

include <iostream.h>

void main()

{

 int a[10], n, m, i;

 int *p;

 p =a;

 cout << "Enter how many elements?";

 cin >> n;

 cout << endl << “Enter “ << n << “elements;

 for (i=0 ; i<n ;i++)

 {

cin >> *(p + i);

 }

 cout << endl << "Enter element you want to search";

 cin >> m;

 for (i=0 ; i<n; i++)

 {

 if (*p == m)

{

cout << "Position of element is "<< i+1;

 break;

}

 else

 p++;

 }

 if (I == n)

 cout<<"Element not found";

}

OUTPUT

Enter how many elements? 4

Enter 4 elements

10 23 4 56

Enter element you want to search 23

CHAPTER 4

Position of element is 2

 Program to find out maximum number in array.

include <iostream.h>

void main()

{ int a[10], n, i;

 int *p;

 p = a;

 cout << "Enter how many elements?";

 cin >> n;

 cout << endl << “Enter “ << n << “elements;

 for (i=0 ; i<n ;i++)

 { cin >> *(p + i); }

 int max = a [0];

 for (i=1 ; i < n ;i++)

{

 if (* p > max)

 { max = *p;

p++;

 }

 else

p++;

 }

cout << max;

}

 Program to insert an element into array using pointer. (Insertion)

include <iostream.h>

include<stdlib.h>

void main()

{ int a[10],n,m,i,pos,*p;

 p=a; // store a base address of array in p

 cout<<"Enter how many elements?";

 cin >> n;

 cout << “Enter” << n << “elements”;

 for (i=0;i<n;i++)

 {

cin >> *(p + i);

 }

 cout<<"Enter element u want to insert";

 cin >> m;

 cout<<"Enter position";

 cin >> pos;

 for (p = p + n , i= n - 1; i >= pos-1 ; i--, p--)

 {

 p=(p - 1);

}

 *p=m;

 for (i=0; i <= n; i++)

 cout<< * (p + i);

 }

OUTPUT

enter how many elements?5

12 13 14 16 17

Enter element u want to insert 15

Enter position4

12 13 14 15 16 17

CHAPTER 4

 Program to reverse an array using pointer (reversing)

include <iostream.h>

include <conio.h>

 void main()

 { int I;

 int a[10],n;

 int *p ,*q;

 p = a ; // p points to first element of array

 cout<<”Enter how many elements? “;

 cin>>n;

 cout << “Enter” << n << “elements”;

 for (I=0;I<n;I++)

 {

cin >> *(p + I);

 }

 q= a + n - 1; // q points to the last element of array

 for (I=0; I<=n/2;I++)

 { t=*p;

 *p=*q;

 *q=t;

 p++;

 q--;

 }

 cout <<”\nThe reverse array is :”<< endl;

 for (I=0;I<n;I++)

 cout<<endl<<*(p+I);

 }

OUTPUT

 Enter how many elements? 5

 Enter 5 elements:

 12 34 56 7 4

 The reverse array is :

4 7 56 34 12

 Program to sort an array .(sorting)

include <iostream.h>

 # include <conio.h>

 # include <stdio.h>

 void main()

 { int a[10],n ,I,t;

 cout<<"\nEnter how many elements?";

 cin>>n;

 cout << “Enter” << n << “elements”;

 for (i=0;i<n;i++)

 cin >> *(p + i);

 for (i=1; i<n;i++) // number of iterations

 {

 for (j=0;j<=n-i; j++) // number of comparisons in each iteration

 {

 if (*(p+j) > *(p+j+1))

 {

 t= *(p+j);

 *(p+j) = *(p+j+1);

 *(p+j+1)=t;

 }

 }

 }

 cout <<"\nThe sorted array is :"<< endl;

CHAPTER 4

 for (i=0;i<n;i++)

 cout<< *(p+i);

 }

 OUTPUT

 Enter how many elements?4

12 4 7 22

 The sorted array is :

 4 7 12 22

5.3 POINTER TO STRING:

 String is nothing but an array of characters.

 Pointer to string is a pointer to character data type which points to the base address of the string. Using this pointer

,we can access individual characters in string.

Declaration of pointer to string:

Syntax : data - type *ptr;

Example : char *ptr;

 To initialize pointer to the base address of the string ,assign the name of the string to the pointer.

Char city[] = “mumbai”; // city is a character array containing “mumbai”

Char *p; // pointer to string

P = city; // assign base address of city array to pointer p

PROGRAM BASED ON POINTER TO STRING:

Program to find length of a string using pointer.

include <iostream.h>

void main()

{

 char s[40]; // declare character array

 char *p; // declare pointer to string

 p = s; // initialize pointer to the base address of the string

 int length =0 ;

 cout<<"Enter string : " ;

 cin>> s;

 while (*p != ‘\0’)

{

 length++;

 p++;

}

cout << ”Length of string = “ << length;

}

OUTPUT

Enter string : vidyalankar

Length of string = 10

 Program to reverse a string using pointer to string.

 # include <iostream.h

 # include < string.h>>

void main()

{ char s[40]; // declare a character array

 char *p , *q; // declare two pointers

 cout<<"Enter string : " ;

 cin>> s;

 len = strlen (s); // find the length of the string.

 p = s; // initialize pointer p to the first character of array s

q = p +s-1; // initialize q to point to the last character of array s

//Now swap first and last character , then second and second last character and // so on till len /2

 char t;

for (int i =0 ; i < len /2 ; i++)

{

t = *p;

*p =*q ;

CHAPTER 4

*q =t;

p++;

q - -;

}

cout << “After Reversing the string is : “ <<s;

}

OUTPUT

Enter string : dipali

After reversing the string is : ilapid

 Program to compare to strings.

include<iostream>

int cmp(char *,char *); // function prototype

void main()

{

 char s1[40], s2[40];

 cout<<"Enter string1 : " ;

 cin>> s1;

 cout<<"Enter string2 : ";

 cin>>s2;

 int i=cmp(s1 , s2);

 if(i <0)

 cout<<"string1 is less than string2";

 else if (i>0)

 cout<<"string1 is greater than string2";

 else

 cout<<"eqaual";

 }

int cmp (char *s1,char *s2)

{

 while(*s1 == *s2)

 {

 if(*s1=='\0')

 return(0);

 s1++;

 s2++;

 }

 return(*s1- *s2);

 }

Output

Enter string1 : dipali

Enter string2 : dip

string1 is greater than string2

 Program to copy one string to another using pointer to string (May –2003)

include <iostream.h>

void copy(char *,char *); // function prototype

void main()

{ char s[40],t[40];

 cout<<"Enter source string ";

 cin >> s;

 cout<<"Enter target string";

 cin >> t;

 copy (t , s);

 cout<<"\nAfter copy Target string is:";

 cout << t;

 }

void copy(char * t, char *s)

{

 while(*s != '\0')

 {

 *t=*s;

 t++;

CHAPTER 4

 s++;

 }

 *t='\0';

 }

Enter source string : dipali

Enter target string: sada

After copy Target string is: dipali

 Program to concat(join) two strings using pointer to string. (specimen paper)

include <iostream.h>

void cat (char *,char *); // function prototype

void main()

{ char s1[40], s2[40];

 cout<<"Enter string1 : " ;

 cin>> s1;

 cout<<"Enter string2 : ";

 cin>>s2;

 cat (s1,s2);

 cout << “After concatenation : “<< s1 <<endl;

 cout << “After concatenation : “<< s2 <<endl;

}

void cat (char *s1 , char * s2)

{

 while (*s1 != ‘\0’)

 s1++; // take the pointer s1 at the end of first string.

 while (*s2 != ‘\0’)

 { *s1 = *s2; // copy s2 char by char to s1

 s1++;

 s2++;

 }

 *s1 = ‘\0’; // after concatenation append null

}

OUTPUT:

Enter string1 : dipali

Enter string 2 : sadavarti

After concatenation s1 = dipalisadavarti

After concatenation s2 = sadavarti

 Program to count number of vowels in a given string.

include <iostream.h>

void main()

{ char s[40]; // declare character array

 char *p; // declare pointer to string

 p = s; // initialize pointer to the base address of the string

 int count = 0;

 cout<<"Enter string : " ;

 cin>> s;

 while (*p != ‘\0’)

{

 if (*p == ‘a’ || *p == ‘e’ || *p == ‘i’ || *p == ‘o’ || *p == ‘u’)

count++;

 p++;

}

cout << “No. of vowels = “ << count;

}

Enter string : education

No. of vowels = 5

 Program to search a character in a string using pointer to string

include <iostream.h>

void main()

{ char s[40]; // declare character array

 char *p; // declare pointer to string

 p = s; // initialize pointer to the base address of the string

CHAPTER 4

 cout<<"Enter string : " ;

 cin>> s;

 char ch;

 int pos = 0;

 cout << “Enter character u want to search : “;

 cin >> ch;

 while (*p != ‘\0’)

{

 if (*p == ch)

{

 cout << “ character found at position << pos +1;

 break;

}

pos ++;

 p++;

}

if (*p == ‘\0’)

 cout << “character not found;

}

Enter string : education

Enter character u want to search : c

Character found at position : 4

Program: To find whether the string is palindrome using pointer to string.

#include<iostream.h>

#include<conio.h>

#include<string.h>

void main()

{

char str[20],str1[20],*ptr,*ptr1;

int t=0;

clrscr();

cout<<"\n Enter a string : ";
cin>>str;

strcpy(str1,str);

strrev(str);

ptr=str1;

ptr1=str;

while(*ptr!='\0' && *ptr1 !='\0')

{

if(*ptr!=*ptr1)

{

t=1;

break;

}

ptr++;

ptr1++;

}

if(t==0)

cout << "\nString is palindrome.";

else

cout << "\nString is not palindrome.";

getch();

}

POINTER TO OBJECT:

 A pointer can point to an object created by a class.

 Consider the following example :product x;

Where ‘product’ is a class and x is an object of product class.

We can define pointer ptr of type product, as shown below. product *ptr.

Now this ptr can be used to store an address of object of class product. Pointer to objects are useful in creating objects

at run time.

Example:

CHAPTER 4

class product

{

private: int code;float price;

public:void getdata(void)

{

cout << “enter code”;

cin>>code;

cout << “enter price”;

cin>>price;

}

void display(void)

{

 cout << code <<price;

}

};

void main()

{

product p1; // create object of product

product *ptr; // create pointer of type product

ptr = &p1; // ptr points to object p1

p1.getdata (); // Invoking getdata() using object

ptr -> getdata (); // Invoking getdata() using pointer to obejct

p1.display();

ptr ->display();

}

Here -> is called member access operator.

It requires a pointer to object on LHS and member function on RHS.

NOTE : The following statements are same

1) p -> getadat();

2) (*p) . getdata();

CREATING OBJECTS USING POINTER / NEW OPERATOR

We can create the object using new operator. The new operator is used to create an object at run time.

Syntax :

 Datatype *pointer-var = new datatype;

Example :

 product *p = new product;

The new operator allocates required memory space for the object and returns the address of the allocated memory to

the pointer variable on LHS (i.e. p)

We can also create an array of objects using pointer.

Syntax :

 Datatype *pointer-var = new datatype [size];

 product *p = new product [5];

This statement allocates memory space array of 5 objects of type product and return the base address of the array to

the pointer p;

Using new operator we can create an array of integers also.

Thus to create an array of 10 integers write,

int *p = new int [10];

PROGRAM ILLUSTRATING USE OF POINTER TO OBJECT:

include <iostream.h>

class product

{ int code;

float price;

public:void getdata(void)

{

cout << “enter code”;

cin>>code;

cout << “enter price”;

cin>>price;

}

void display(void)

{

CHAPTER 4

 cout << code <<price;

}

};

void main()

{ int n;

cout <<”enter how many products “ ;

cin >> n;

product *p = new product[n]; // create array of 5 products using pointer to object.

for (int I=0; I<=n ; I++)

{

 p -> getdata ();

 p-> display();

 p++;

}

}

 This Pointer :

Ques : Explain the concept of this pointer (Dec-2003 ,may-2005)

 C++ uses a unique keyword called ‘this’ to represent an object that invokes a member function.

 This unique pointer is automatically passed to a member function when it is invoked.

 ‘this’ is a pointer that always points to the object for which the member function was called.

 For example, the function call A.max() will set the pointer ’this’ to the address of the object A. Next time suppose

we call B.max() , the pointer ‘this ‘ will store address of object B.

Consider the following example:

Class sample

{ int a;

public :void setdata (int x)

{ this ->a = x;

 }

};

The private variable a can be directly used inside a member function like a =123;

We can also use the following statement to access private variable a this -> a =123;

class example

{ private : int m;

 public:void setdata(int a)

{ m = a ; // one way to set data

 this -> m = a; // another way to set data using this pointer

}

void showdata (void)

{ cout << m; // one way to display data

 cout << this ->m; // another way to display data using this pointer

}

};

Practical use of this pointer:

1) this pointer is normally used when we overload the operator using member function

2) this pointer is used to return object by reference.

 We can pass object to the function and return object from the function either by value or by reference. When

entire object is passed / returned by value, a copy of that object is created. This leads to considerable wastage of

memory.

 But when the object is passed/ returned by reference, no new copy is created, only reference to that object is

passed to the function, this saves memory.

 We can return object by reference using this pointer as shown below.

Return *this;

 The above statement returns the object by reference.

Returning object by reference using this pointer

include <iostrem.h>

Class circle

{ private : int rad;

 float x , y;

public:circle (){ } // default constructor

 circle (int rr ,float xx , float yy)

CHAPTER 4

 { rad = rr ;

 x =xx ;

 y=yy ;

}

circle& operator = (circle &c) // overloading = operator to copy data //members of one object to another.

{ this -> rad = c.rad;

 this ->x = c.x;

 this->y = c.y;

 return *this; // returning object by reference

}

void showdata()

{

 cout << rad << x <<y;

}

};

void main()

{

circle c1,c2;

c1.setdata(3,5,6);

c2 =c1;

c1.shwdata();

c2.showdata();

}

POINTER TO DERIVED CLASSSES:

 We can use pointer not only to the base objects but also to the object of derived class.

 “Pointers to object of base class are type compatible with pointers to objects of derived class”. This means the

base class pointer can point to the object of derived class.

 There fore a single pointer variable (base class pointer) can be used to point to the object of different derived

classes.

 For e.g. If B is a base class and D is a derived class form B, then a pointer declared as a pointer to B can also be

pointer to D.

Consider the following declarations

 B *ptr; // pointer to base class

 B b; // create base class object

 D d; // create derived class object

 ptr = & b; // ptr points to base class object

We can make ptr to point to derived class object also.

 Ptr = &d; // will work.

 This is valid because, d is an object of class D that is derived form class B.

 However there is a problem using ptr (pointer to base class) to access the public members of the derived class.

 Using base class pointer ,we can access only those members of derived class, which are inherited from base class.

The members that originally belong to derived class cannot be accessed.

 Moreover, in case a derived class member function overrides the base class member function (that is, same

function exists in both base and derived class) , and if you invoke this member function using ptr (pointer to base

class) then always base class function will be invoked.

 This is because the compiler ignores contents of the pointer and chooses a member function that matches its type.

Since ptr is of type base class it will always invoke the base class member function.

incluide <iostream.h>

Class base

{ public:void display ()

{ cout << “In base class “<< endl;

}

};

Class derived1: public base

{ public:void display ()

{ cout << “In derived1 class “ << endl;

}

};

void main()

{ base *ptr; // pointer to base class

CHAPTER 4

 base b1; // create object of base class

 ptr = &b1; // ptr points to base class object b1

 b1.display () ; // invokes base class display()

 derived d1; // create object of derived class

 ptr = & d1; // ptr now points to derived class object d1 . will work

 ptr -> display (); // Invokes base class display();

}

OUTPUT

In base class

In base class

 Always base class function is called irrespective of whose address is stored in ptr. Compiler checks the type of a

ptr and ignores contents of ptr.

CHAPTER 4

#include <iostream>

using namespace std;

class emp

{

 private :

 int emp_id;

 float salary;

public:

void getdata(void) // Inline function

 {

 cout <<"\n ENTER EMP ID "<< endl;

 cin>>emp_id ;

 cout <<"\n ENTER SALARY"<<endl;

 cin >> salary;

 }

 void showdata(void) // Inline function

 { cout <<"\n EMP ID = "<< emp_id<<endl;

 cout <<"\n SALARY ="<< salary << endl;

 }

}; // END OF CLASS

int main()

{

 emp e1,*e;;

 e=&e1;// creating 2 objects of class emp

 e->getdata(); // get data for object e1

e->showdata(); // display data object e1

return (0);

}

